Max-of-N fluence is the maximum peak fluence at a given location over N number of shots and is important for calculating fluence dependence for intrinsic laser-induced optic damage. Previously, we observed the Max-of-N effect on the National Ignition Facility and developed an ad-hoc model to calculate its effect. In this work, we attempt to understand the fundamental mechanism that causes this Max-of-N effect. We conclude that the primary fundamental mechanism responsible for this effect is dominated by the combination of fluence variations and pointing jitter of the laser. This discovery both strengthens our model for predicting optics longevity and gives us insight into how to mitigate this effect. |
National Ignition Facility
Data modeling
Optical engineering
Laser energy
Laser optics
Pulsed laser operation
Laser systems engineering