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Abstract
Maxwell equations for Electro-magnetic(EM) vector fields E and B are solved in vacuum, free
from charges and currents, and EM wave packets propagating in z direction are formed
using cylindrical coordinates ( s, !, z ) with an average propagation vector k0 and a radial
parameter ! used for defining Bessel function Jn ( !"#"$"%&""'()*"%+,-+"."/)"0#"#*%1'")*2)")*-#-"
wave packets have a group velocity vg= ck0 / [k02+!2] 0. 5 smaller than the standard velocity c
of light in vacuum, and they spread in z direction with progression of time, like particles
having non-zero rest mass m0 = " ! / c. It is shown that these slow photons can describe
motion of elementary particles like electrons and protons with regard to their velocity and
linear momentum . Quantization of energy U of these EM wave packets is done using the
condition U = " c [k02 + !2 + "2] 0. 5 and then the angular momentum determined for them,
(here " is the standard deviation in the propagation vector k ). After quantization, the z
components of the linear momentum and angular momentum of the wave packets are found
to be " k0 and n " , respectively. It is shown that for ! much smaller than k0 these wave
packets can appear like light photons , and for ! much larger than k0 these wave packets can
appear like electrons and protons, with regard to their mechanics .
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Summary
Mathematical Formulation:
Electro-magnetic (EM ) fields E and B are well known1 to follow Maxwell equations giving
divergence and curl of the vectors E and B . Plane wave solutions are normally obtained by
solving these equations in Cartesian coordinates, and velocity of these plane waves in
vacuum is known to be c = 2.99792458x1010 centimeter/second . However, the equations for
fields E and B can be solved in cylindrical coordinates ( s, !, z) as well, using functions of the
type Jn(!s) exp(ikz + in! 3 i#t ) where n is the order of the Bessel function Jn with radial
coordinate s and Bessel parameter !, k is the wave propagation vector in z direction, and #
is the angular frequency given by
(#/c)2= k2 + !2 . In the present study wave packets have been formed in vacuum ( free from
charges and currents ) using these solutions, and the time dependent motion of these wave
packets is studied numerically with the help of a high speed computer. In the following
analysis the Gaussian system of units is utilized for the EM fields. Maxwell equations1 for E
and B fields in vacuum, free of charges and currents, are :
!.E = 0 ; !.B = 0 ; !xE = - ( # B /# t ) / c ; !xB = ( # E /# t ) / c .
(1)
Each Cartesian component $ of E and B satisfies the wave equation :
!2$ = (#2$/#t2 ) / c2 .
(2)
For the cylindrical coordinates, the z component of the E and B fields are the same as those
for the Cartesian coordinates and thus for EZ or BZ the solution is taken from the above
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wave equation. The remaining components ES , E% , BS and B% are then evaluated directly
from Maxwell equations. For transverse magnetic (TM) mode BZ is zero, and for transverse
electric (TE) mode EZ is zero. For TE mode, one set of real electric and magnetic field
components in cylindrical coordinates is:
(TE)1 :
BZ = A (2&R/!)- 0. 5 Jn " cos(') [g(k)]0. 5 dk ;
BS = - A (2&R!)- 0. 5 (#Jn /#s ) " [ k / !] sin(') [g(k)]0. 5 dk ;
B% = - A (2&R!)- 0. 5 n (Jn /s ) " [ k / ! ] cos(') [g(k)]0. 5 dk ;
ES = -A (2&R!)- 0. 5 n (Jn /s ) " [ ( /(c ! )] cos(') [g(k)]0. 5 dk ;
E% = A (2&R!)- 0. 5 (#Jn /#s) " [ ( / (c ! )] sin(') [g(k)]0. 5 dk .
(3)
where ' = ( kz + n % - (t ), A is an amplitude factor, R is the large radius of the cylinder within
which the Bessel function is normalized . For forming the wave packet, square root of the
Gaussian function g(k) has been multiplied with each of the above field components and
integration carried out over the range of k values from - 4")o + 45"10)*"678$"2#"9
g(k) = [ 1 / (" (2&) 0. 5 ) ]. exp[ - (k-k0)2 / (2 " 2 ) ] .
(4) Another
complementary set of EM fields denoted by (TE)2 is obtainable from the field set (3) by
interchange of the cos(') and sin(') factors. In the present analysis, to begin with for
simplicity, the order n = 0 is considered for numerical evaluations. This then is taken as a
representation of a photon described through its EM field set. The energy density of the EM
field for the TE mode at any coordinate point ( s , % , z ) at any time t is then u , given by :
u = ( BZ2 + BS2 + B%

2 + ES2 + E%
2 ) / (8 & ) .

(5)
Further integration of this energy density u is carried out over the complete range of s from 0
to R and for % from 0 to 2 & , so that study of variation of energy density along the z axis can
be carried out. The energy densities obtained for the field sets (TE)1 and (TE)2 , are given
symbols UZ 1 and UZ 2 , and average of these energy densities is then written as UZ . For n = 1
and higher orders the values of UZ 1 and UZ 2 are found to be equal and have the same
analytical form as for the UZ obtained for the n = 0 order. Thus , in general
UZ = A2 . { f1 ( z , t ) + f2 ( z , t ) } / (16&2 ) ; where
(6)
f1 (z, t) = { " cos(') [g(k)]0. 5 dk }2 + { " (k/! ) sin(' ) [ g(k)]0. 5 dk }2 + { " [(/(c!)] sin(') [g(k)]0. 5dk
}2 ; f2 (z, t) = { " sin(') [g(k)]0. 5 dk }2 + { " (k/! )cos(' ) [ g(k)]0. 5 dk }2 + { " [(/(c!)] cos(')
[g(k)]0. 5dk }2 ;
with ' = (kz - (t) . Further, integration of the UZ over z from -) to +) gives the energy U of
the photon, upon also completing the k integration as:
U=A2[k02+!2+"2] / [4&!2 ] .
(7)
Computational Results and Application to Laser Beams and Massive Particles:
Numerical evaluation of UZ for the TE mode is done from equation (6), with value of c taken
as 1 and amplitude A also taken as 1, for ease of calculation. The photon parameters are
taken as:
k0 = & , ! = & , " = 0.1& . Figure 1 shows the variation of UZ with z at t = 0. It is seen from
the figure that the maxima of energy density of the EM field is located near z = 0. Figure 2
shows the variation of UZ with z at times t = 0, 5, 10, 15, and 20 seconds (as series 1, 2, 3,
4 and 5 respectively). The location of the peak in energy density UZ permits identification of
the photon location z(t) at different times t. Figure 3 shows the variation of photon location
z(t) with time t for two values of ! as & and 2& (as series 1 and 2)and it is seen that the
velocity vg = dz(t) / dt of the photon comes out to be less than the unity value taken for c. By
studying other examples with different k0 and ! values it is found that the photon velocity
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fits very well the group velocity formula: vg = ck 0 / [ k02 + ! 2 ] 0. 5

(8)
When the parameter ! is zero , the field solution given by field set (3) can be reduced to that
for plane waves , and in that case our value of vg also becomes equal to c .Thus it is stated
that for photons having narrow dimensions in the direction transverse to the direction of
propagation, such as for laser beams of light, the velocity of the laser photons in vacuum can
be smaller than the standard velocity of light in vacuum, depending upon how narrow is the
laser beam of light . For describing the lateral size of the photon in the case of the above
studied example (k0 = & , ! = & , " = 0.1&) the energy density u ( averaged over the pair of
complementary fields ) for the n = 0 order is shown with the radial coordinate s in figure 4 at
time t = 0 , at position z = 0 ; and at time t = 40 seconds at position z = vgt = 28.284 ( as
series 1 and 2 respectively) . It is seen that the graphs for the two times almost overlap each
other in radial dependence. The transverse radial width of the central peak in the energy
density of the photon is found to be nearly 3.832/! where the factor 3.832 arises from the
first zero of Bessel function J1 . As an example, for ruby laser light 2 of wavelength 0.6943
micron , with the laser beam radius as 1mm; k0 = 9.049669 micron -1 , ! = 3.832 mm -1 ,
which gives vg = 0.9999999103 c. Thus experimental measurements involving narrow laser
beams of light should correct for this reduction in light velocity. It is further noted from figures
2 and 4 that with progression of time , the peak height of the energy density slowly
decreases and its width increases along the z axis , due to the individual (k , !) components
in the wave packet having different phase velocities. There is no transverse spreading of the
wave packet un-like that for laser beams 2 of light, while the longitudinal spreading is like
that for quantum mechanical 3 spreading of particle wave packets. Thus narrow lateral width
photons travel at slower than the standard velocity of light, and also have spreading in size,
and on both these counts behave like matter particles. If photon energy U is quantized as
"(0 and photon momentum p as "k0, then equation ((0/c)2 = k02 + ! 2 can be transformed to
: U2 = c2 p2 + m0

2 c4 ,
with m0 = " ! / c .
(9)
giving a finite rest mass to the photon depending upon its transverse size, while at the same
time providing the relativistic energy-momentum relationship of special theory of relativity 3 & 4

.
Application to Electrons and Protons:
This analysis is further applied to electrons , considering them to be wave packets of Electro-
magnetic field. Taking the rest mass of the electron as me and putting it equal to " ! / c from
equation (9), the value of the Bessel parameter ! is obtained as 2.5896 x 1010 cm-1 . Further
to consider the electron in motion a typical value of k0 = 10000& is chosen , and " is taken
as 10& for an example. Figure 5 shows the numerically evaluated energy density Uz
evaluated from equation (6) as a function of axial coordinate z at times t = 0.0 sec ,
0.00001sec , 0.00002 sec and 0.00003 sec . The position of the peak in Uz at time t =
0.00001 second is found to be at z = 0.365 cm , which agrees very well with the group
velocity vg = 36369.5 cm/sec given by equation (8) with the chosen values of k0 and !. For
comparison the plane wave beam of light in time t = 0.00001 sec would have traveled
299792 cm. Thus the electron does behave like a slow photon as described above using
electro-magnetic field for its description. Further , an evaluation of particle velocity from " k0 /
me also gives its velocity agreeing exactly with that from equation (8) . The radial
dependence of the energy density u with radial coordinate s is shown for the n = 0 order
considered in figure 6 at time t = 0 sec at z = 0 cm; and at time t = 0.00001 sec at z = 0.365
cm as (series 1 and 2 ), and it is seen that it falls very rapidly with radius near s = 0 , but at
higher s values it falls quite slowly as 1/s , since it is arising due to square of the Bessel
functions . The long range slow fall of the energy density u with radius should permit the
electron to have long range interaction with other electrons, as is required for Coulomb
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interaction1 between charged particles. This description of the electron as a slow photon
allows it to be transversely compact ( localized) and still be de-localized enough for long
range interactions in transverse directions. Results for motion of protons with time shall be
similar to those shown in figures 5 and 6 for the electron, with the mass of the proton mp to
be used in place of mass me of the electron in the numerical evaluations.
Linear Momentum:
The linear momentum density 1 of the Electro-magnetic field is given by (ExB) / (4& c). Using
one TE mode of EM field given by (TE)1 , and integrating the momentum density over the
complete volume , including integration over the range of k values, one obtains the z
component of the total momentum of the field ( now the particle ) as:
PZ = [ A2 / (4& c! 2 ) ] . " (k(/c) g(k) dk .
(10)
It is easily verified analytically that this result applies equally well for TM and TE modes , for
each individual order n of the Bessel function. For the case of non-zero rest mass particles
like electron the value of ! is much larger than k0 and the value of PZ from equation (10)
reduces to
PZ = A2 k0 / (4& c! ) ; which is like what it should be for a particle of rest mass m0 = " ! / c ,
rest mass energy as U0 = A2 / (4& ) and velocity vg = ck0 /! from equations (7) , (8) and (9) .
For the other case where k0 is much larger than ! , such as for laser beam of light , the value
of PZ from equation (10) reduces to: PZ = A2 [ k0 2 + " 2 ]/ [4& c!2 ] ; which on comparison with
U from equation (7) shows that PZ = U / c as it should be for normal photons. Thus our
description of Slow Photons in Vacuum is capable of explaining several aspects of light as
well as of particles having non-zero rest mass like Electrons. A hypotheses is made at this
stage of the paper that the Elementary Particles like Electrons and Protons are actually
wave packets of Electro-Magnetic field and these wave packets need to be further
investigated to fully establish the identity of the fundamental particles.
Quantization:
The wave packets are now quantized , so that the amplitude A of the EM fields can be
specified, and the quantization condition is defined through the energy of the wave packet ,
equally well for both TM and TE modes as :
U=A2[k02+!2+"2] / [4&!2 ] = " c [k02+!2+"2] 0. 5 .
(11)
It is seen that in the limit of k0 much larger than ! and " , U becomes equal to "ck0 with (
also becoming equal to ck0 ; and in the limit of ! much larger than k0 and " , U becomes
equal to "c! with ( also becoming equal to c! . The quantization condition (11) thus leads to
:
A2 = 4& " c !2 [k02+!2+"2] - 0. 5 .
(12)
The linear momentum in the z direction , under the above given quantization condition
becomes:
PZ = " [k02+!2+"2] - 0. 5 " k [k2+!2] 0. 5 g(k) dk .
(13)
In the limit of k0 large compared to ! and " , PZ becomes " k0 and U becomes " c k0 ,
leading to PZ equal to U / c as is normally required for light photons. Further, in the limit of !
large compared to k0 and " , PZ again becomes " k0 while U becomes "c! which is like
that for a particle of rest mass " ! / c as already noted above .
Angular Momentum:
The EM field set given by the (TE)1 mode given by equations (3) for any order n can be
used for evaluation of the orbital angular momentum density r x (ExB) / (4& c) of the EM
field for any order n . The z component of the angular momentum density of the EM field , in
cylindrical coordinates is s ( EZ BS - ES BZ ) / (4& c) which for TM modes becomes s EZ
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BS / (4& c) and for TE modes becomes - s ES BZ / (4& c) for any order n . Integration over
the complete volume then gives the z component of Angular Momentum LZ as :
LZ = n [ A2 / (4& c !2 ) ] . " [k2+!2] 0. 5 g(k) dk .
(14)
for each of the (TE)1 and (TE )2 modes, for any order n , with the value of LZ being same for
TM modes as well . Upon putting the value of A2 from equation (12) this value of LZ
becomes :
LZ = n " [k02+!2+"2] - 0. 5 " [k2+!2] 0. 5 g(k) dk .
(15)
It is seen that in the limit of k0 much larger than ! and " the LZ becomes equal to n " , and
in the limit of ! much larger than k0 and " the LZ again becomes equal to n " . Thus it is
seen that for both normal light photons and for electron particle like photon wave packets the
z component of angular momentum of the EM field is n " . As the Bessel functions Jn can
have positive and negative values of n , the z component of angular momentum of any given
individual TE (or TM) mode can have a value n " or - n " . Thus for a given order of
magnitude |n| only two possible values of LZ are allowed as n " or - n " , and not ( 2 n
+ 1) values . The two spin states of the electron , with spin as ± ½ as introduced by the
description of the electron through the Dirac equation3 now appear simply as only two
possible azimuthal dependences of the wave function, associated with Bessel function of
any integer order except for the zeroth order.
It is thus shown that under different values of wave parameters k0 , # and Bessel order
n these slow EM wave packets in vacuum can appear like light photons as well as like
electrons and protons , with regard to their mechanical features of velocity , energy ,
rest mass , linear momentum and angular momentum.
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Figure 3. Figure 4.

Figure 5. Figure 6.
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