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ABSTRACT  

In terms of 3D target detection, a voxel-based detection method is proposed: Voxel Index R-CNN, aiming at the balance 
between the accuracy of detection results and detection efficiency. In order to improve the timeliness of target detection, 
this paper proposes a voxel index query method, which uses the index difference constraint to reduce the computational 
loss of the query process for quantified spatial voxels. On this basis, a voxel feature extraction module suitable for it is 
designed. apply index query to optimize the ROI pooling layer to speed up voxel feature extraction. The experimental 
results on the 3D dataset of KITTI show that the results are 90.63%, 81.74%, and 77.23% on three different detection 
difficulty levels of cars, and the frame rate of detection processing is 28.5FPS. Compared with other methods, this 
method of a faster detection speed can be achieved while maintaining a higher accuracy rate. 
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1. INTRODUCTION

3D object detection is an important part in the field of autonomous driving and robotics, combining spatial information 
such as the pose and size of objects to provide input for downstream path planning and decision-making tasks. Although 
the recent development of deep learning has caused an upsurge in object detection using 2D images [1-3]. Due to the 
sparseness and unstructured characteristics of point clouds, it is difficult to apply these methods to 3D point clouds. In 
addition, 3D object detection applications have higher requirements on the timeliness of detection, which makes it 
difficult to design a point cloud space. 3D detection methods appear more difficult. 

Existing point cloud-based 3D detection methods can be roughly divided into two categories, namely, voxel-based 
methods and point-based methods. The voxel-based methods VoxelNet[4], SCOND[5] and STD[6] divide the point 
cloud into voxels with a grid. Because of its regular spatial distribution, it is more suit-able for convolutional neural 
networks, and the efficiency of feature extraction is also high. Higher; the disadvantage is that the voxelized point cloud 
loses precise spatial information. Current point-based detection methods perform better. For example, PointNet [7] takes 
the original point cloud as input, and selects a part of key points to group and extract features. Point-based methods 
3DSSD[8], SST[9] have excellent performance on experimental platforms such as KITTI[10], Waymo[11], although 
point-based methods have high detection accuracy, but in general, based on The point method is less efficient because 
the process of querying the nearest neighbor point cloud features using keypoints consumes a lot of computational 
resources. 

As current detection methods mature, a new challenge is faced when deploying these detection methods into real-world 
application systems, how to design a method that is as accurate as point-based methods and as fast as voxel-based 
methods, in order to achieve this goal, we adopt a voxel-based approach and try to improve its accuracy. Through a 
comparative analysis of current detection methods, voxel-based methods usually perform detection on bird eye view 
(BEV) representations, even if the input data is 3D voxels. In contrast, point-based methods usually rely on keypoints to 
represent 3D features and fuse based on point-wise features. The main disadvantage of existing voxel-based methods is 
that they convert 3D feature volumes to BEV representations without ever recovering the 3D structure feature. 

Based on the above analysis, a voxel-based detection method is designed in this paper: voxel-indexed R-CNN. Voxel 
index R-CNN adopts a new query method - voxel index query, which directly extracts 3D voxel features of key point 
neighborhoods and converts them into BEV representations. On this basis, 2D backbone network and RPN are applied to 
generate 3D regions. Proposal, optimize voxel set abstraction to aggregate voxel features, and perform feature extraction 
on 3D region proposal regions, avoiding the problem of missing 3D structural features caused by direct detection on 
BEVs.  
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2. VOXEL INDEX R-CNN  

In this section, the design of voxel index R-CNN, a two-stage 3D object detection framework based on RCNN, is 
introduced. As shown in Figure 1, the voxel index R-CNN network includes (1) a 3D backbone network, (2) ) The 2D 
backbone network is followed by a region proposal network, (3) a voxel feature extraction module, and (4) a voxel 
region of interest (ROI) pooling network. In voxel indexed R-CNN, the original point cloud is firstly divided into regular 
voxels, and then the 3D backbone network is used for feature extraction, and then the sparse 3D voxels are converted 
into BEV representation, and the 2D backbone network is applied on this basis. and RPN to generate 3D region 
proposals. The voxel feature extraction module uses the voxel center where the key points are located to query and 
aggregate adjacent voxel features through the voxel index, and fuse with the 3D proposal region generated by the region 
proposal network (RPN). , which uses a voxel ROI pooling layer to extract ROI features and feed these features to the 
detection module for object classification and bounding box regression. These modules are discussed in detail below. 
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Figure 1 Voxel Index R-CNN Framework 

2.1 Data acquisition module 

The point cloud is voxelized according to the method in Voxelnet. Referring to the grid division method of the point 
cloud in PV-RCNN and the characteristics of the experimental data set KIITI, the size of the unit voxel is set as the 
detection of the vehicle category. , the paper clips the ground truth distribution of the point cloud at [0, 70.4], [−40, 40], 
[−3, 1]m along the X, Y, Z axes, which will get 352×400×40 Voxel collection. 

The voxel index RCNN network model is constructed with reference to PV-RCNN. For the 3D backbone network, the 
3D backbone network is mainly divided into four modules, and the number of convolution kernels is 16, 32, 48, 64 
respectively. The point cloud is converted into gridded features, and the feature maps obtained by downsampling are 
stacked together along the Z axis and con-verted into BEV feature maps. The 2D backbone network consists of two mod-
ules: a feature extraction sub-network and a multi-scale feature fusion sub-network that upsamples and concatenates top-
down features. Both modules con-sist of 5 convolutional layers with feature dimensions of (64, 128) respectively, the 
first module maintains the same resolution as the 3D backbone output in the X and Y axes, while the second module’s 
resolution rate is half of the former. 

2.2 Voxel feature extraction and ROI pooling 

The voxel index R-CNN designs a voxel ROI pooling layer to aggregate spatial information from 3D voxel features, and 
uses voxel grid space to represent points. The positions and features use non-empty voxel center coordinates 

respectively   , ,i i i iv x y z , where the range of , ,i j k  is (0,N) and eigenvector represented by
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Figure 2 Spatial and Sectional Representations of Ball, Manhattan Distance, and Voxel Index Query 

2.2.1 Voxel index 

Compared with the disordered point cloud, the voxels are regularly arranged in the quantized space, which is easy to 
query. Inspired by the traditional ball query and Manhattan distance query methods, this paper proposes a method called 
difference index query, Constrain the index , ,i j k  of the key voxel  , ,i j k , so that  , , 0,i j k K     will 

obtain (2K+1) 3-1 voxels adjacent to the key point voxel, for example, K=1, will obtain 26 voxels around the key point 
voxel; K = 2, obtain 124 voxels in two layers adjacent to the key point voxel. For the traditional ball query to sample 
uniformly distributed voxels through farthest point sampling, it is necessary to calculate the distance D between all non-
empty voxels and key point voxels to determine whether they belong to the sampling range; while the voxel-based 
Manhattan Distance sampling method requires It is to determine whether the voxel is in the sampling range by 
calculating the Manhattan distance between the voxel and the non-empty voxel. These two methods need to consume a 
lot of computing resources. In contrast, index query only needs to determine whether the voxel of the query is empty, 
avoiding many distance calculations and improving the efficiency of the query. 

2.2.2 Voxel Feature Extraction Module 

2048 key points are sampled from the original point cloud through FPS, which can ensure that the sampled key points 
can be evenly distributed in non-empty voxels, which better represent the entire scene, and then pass these key points to 
the 3D backbone network. Each module performs voxel feature extraction. Specifically, it determines the voxel 

  , ,i i i iv x y z  where the key point 
ip  is located and uses the center coordinates of the voxel to aggregate the 

features of adjacent non-empty voxels through index query to obtain accurate position information and irregular voxels. 
features, and finally input these voxels semantic information together with the 3D proposal regions generated by the 
region proposal network into the voxel ROI for pooling. 

2.2.3 Voxel ROI pooling layer 

First, based on the original voxel, the proposed region of fusion voxel features is divided into G×G×G regular sub-
voxels, and the center point of the sub-voxel is the same as the original voxel. Because the 3D voxels are too sparse, and 
the space occupied by non-empty voxels is less than 3%, the maximum pooling layer in Fast-RCNN cannot be used to 
directly extract features for each sub-voxel. The features of the voxels are aggregated together. For example, given the 

center point ig , the paper first uses the index difference query to obtain the set of adjacent voxels, and then uses the 

Point Net module to aggregate the features of these adjacent voxels: 

i
k 1,2, ,

= max { (v g ; )}k k
i i i

K
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 
  (1) 

Among them, the maximum pooling operation  ꞏmax  represents the aggregated feature vector i  obtained along the 

number of channels, and  ꞏ  represents a layer of multilayer perceptron, i
k  represents the voxel feature of i

kv , 
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i iv g  represents the relative coordinate between iv and ig . In order to improve the computational efficiency, this 

method does not aggregate the voxel features of the four stages in the 3D backbone network as in PV-RCNN, but only 
aggregates the voxel features of the latter two stages of the 3D backbone network. For each stage, set the size of the 
index difference to group voxels of multiple scales. 

2.3 Loss function  

Referring to the loss function used in PointPillars [12], the loss function of RPN is determined, which is composed of the 
object classification loss function and the bounding box regression loss function. The formula is: 

^

^ ^

1
[ (p ,c )

(c 1) ( , )]

RPN cls i i
if

i reg i i
i
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L t
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




 (3) 

Among them, pi  and i  represent the output of target classification and bounding box regression, respectively, ^ci  and 
^
it  represent the classification label and regression target, respectively, ^(c 1)i   means that only the regression loss 

of anchor points on foreground objects is calculated, and ƒN  represents the number of anchor points on foreground 

objects. The object classification function is expressed by Focal loss [13] as: 

-clsL  t t（1-p ) log(p ) (4) 

   is a constant, when it is 0, clsL  is consistent with the cross-entropy loss function, and tp  is the probability of the 

current prediction. 

The regression loss function is represented by Huber loss, and the formula is: 

2
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2（ -f(x)) -f(x)

-f(x)

 (5) 

δ is a hyperparameter. When δ tends to 0, it will tend to mean absolute error; when δ tends to ∞, it will tend to mean 
square error. 

2.4 Detection module 

The detection module takes the region-of-interest features as input for bounding box regression. Specifically, the shared 
2-layer MLP first converts ROI features into feature vectors, and then passes the vectorized features into two parallel 
branches: one for object bounding box regression and the other for confidence prediction. The bounding box regression 
branch predicts the difference from the 3D proposal region to the ground truth, and the confidence branch predicts the 
confidence associated with the IOU. 
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3. EXPERIMENT 

3.1 Training 

The entire framework of Voxel Index R-CNN is optimized using the Adam optimizer. In the training phase, the network 
is set to train for 80 rounds, the number of samples inputted each time is 12, the learning rate is initialized to 0.01, and 
the cosine annealing strategy is used to update. In the detection module, the   threshold for the foreground is set to 0.75, 
and the   threshold for the background is set to 0.25.  Threshold   for bounding box regression is set to 0.6. In this paper, 
128 regions of interest are randomly selected as the training samples of the detection module. Among the sampled ROIs, 
half are samples of, which coincide with the corresponding ground-truth boxes. In the inference stage, the paper first 
performs Non-Maximum Suppression on the RPN with a threshold of 0.7, and retains the first 80 proposal regions as the 
input of the detection module. After the bounding box regression prediction, NMS is applied again with a threshold of 
0.1 to remove redundant predictions result. 

3.2 Result 

The results of Voxel Index R-CNN on the KITTI validation set for 3D target detection AP and BEV target detection AP 
are shown in Table 1, where the 9 threshold is 0.7. 

Table 1 3D object detection AP and BEV object detection AP on KITTI val set 

IOU 
 

AP3D(%) APBEV(%) 
easy medium hard easy medium hard 

0.7 91.67 85.36 82.75 94.53 92.32 89.76 
Figure 3 shows the 3D detection results of three of these scenes on the KITTI test set. 

 
Figure 3 Detection effect on KITTI test set 

The results of Voxel Index R-CNN are compared with several state-of-the-art methods on the KITTI test set. The results 
of the three detection difficulty levels of easy, medium and difficult are shown in Table 2. 

Table 2. Time domain index statistics of vibration signal 

Method FPS 
(Hz) 

AP3D% 
easy medium hard 

Image + Lidar 
MV3D - 74.97 63.63 54.00 

AVOD-FPN 10.0 83.07 71.76 65.73 
PointSIFT+SENet - 85.99 72.72 64.58 

Lidar 
bashed on point     
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STD 9.7 87.95 79.71 75.09 
3DSSD 11.3 88.36 79.57 74.55 

 PV-RCNN 23.5 90.25 81.43 76.82 
bashed on vexel     

VoxelNet - 77.47 65.11 57.73 
SECOND 25.7 83.34 72.55 65.82 
Part-A2 - 87.81 78.49 73.51 

PointPillars 36.4 82.46 74.28 68.61 
SSA-SSD 24.1 87.68 79.76 73.89 

Voxel R-CNN 25.2 90.79 81.62 77.05 
Voxel Index R-CNN(ours) 28.4 90.63 81.74 77.23 

 

The comparison results show that the voxel index R-CNN in this paper achieves a good balance between accuracy and 
efficiency among all methods. Using the voxel index query method, the voxel index R-CNN achieved an average 
accuracy (AP) of 90.63% on the medium and easy difficulty of the Car class, and reached an average accuracy of 
81.74% on the medium difficulty. The average accuracy rate is 81.62%, and the frame rate of detection processing is 
28.5FPS. Specifically, voxel-indexed R-CNN achieves comparable accuracy with the best performing models PV-RCNN 
and Voxel R-CNN. Voxel-indexed R-CNN is similar in structure to PV-RCNN, but the detection frame rate Compared 
with 4.9 FPS higher, it proves that the use of voxel index query indeed reduces the computational loss; the detection 
result is 0.12% and 0.22% higher than that of Voxel R-CNN at the medium and difficult levels, respectively, indicating 
that the feature extraction module has a good effect on the ROI area. It is effective to perform feature enhancement. 
Furthermore, the performance of voxel-indexed R-CNN is greatly improved over existing voxel-based models. 

4. CONCLUSION 

This paper proposes a 3D object detection method based on voxel index query - voxel index R-CNN. The model Voxel 
R-CNN takes voxels as input, first generates 3D region proposals from BEV feature representations, and utilizes a voxel 
ROI pooling layer to extract region features from 3D voxel features. The voxel feature extraction module fuses the 
extracted features with the 3D proposal regions generated by the RPN, and then uses a voxel region of interest pooling 
layer to extract features, which are fed to the detection module for object classification and bounding box regression. The 
test results on the KITTI dataset show that the voxel-indexed R-CNN in this paper achieves a good balance between 
detection accuracy and efficiency. The voxel-indexed R-CNN in this paper is a simple and effective 3D object detection 
method and it can be applied to the research of other downstream tasks such as autonomous driving and robotics. 
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