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ABSTRACT.  

While the combustion vehicle promote the economic development, they also bring environmental pollution and energy 

crisis issues. As a new type of new energy vehicle, Fuel Cell Hybrid Electric Vehicles (FCHEV) attracted widespread 

attentions due to its characteristics of zero-emission and high energy density. At present, fuel economy and fuel cell aging 

are the important factors affecting the development of FCHEV. To this end, A deep reinforcement learning based energy 

management strategy (DQN) is proposed in this paper for energy management system of FCHEV, and improve the life-

time of fuel cell by reducing frequent fluctuation in fuel cell output power. The standard CycleRun are used to train the 

energy management strategy, and compared the training result with two benchmark energy management strategies. The 

result shows that the proposed energy management strategy can achieve lower computation cost, and reduce the power 

fluctuations. 
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1. INTRODUCTION 

1,1 Background 

With the development of economy and industry, the amount of vehicles increases rapidly, which has aroused concern of 

energy unsustainability and enviroment pollution. FCHEV, powered by hydrogen fuel cells,offer a promising solution for 

sustainable and zero-emission transportation. 

The development of Fuel Cell Hybrid Electric Vehicles (FCHEVs) is crucial in the face of global challenges such as 

climate change and dwindling fossil fuel reserves. In this context, powertrain powered by fuel cells are considerd a 

promising alternative to combustion engines. Fuel cells convert chemical energy to electrical energy with high efficiency 

and performance. This result in bettery fuel economy and extended cruising ranges. FCHEV development presents 

economic opportunities and industrial growth potential. This results in better fuel economy and extended driving ranges. 

Additionally, hybrid powertrain improves power management and energy storage. FCHEV development presents 

economic opptunities and industrial growth potential, and can also enhance energy security by reducing reliance on 

imported fossil fuels. 

In conclusion, FCHEVs are essential for addressing climate change, reducing fossil fuel dependency, and achieving 

sustainable transportation. 

1,2 Literature review 

Recently, energy management is a key constraint in the advancement of FCHEV. The energy management strategies for 

FCHEV can be categorized into rule-based strategies and optimization-based strategies[1]. Rule-based strategies are 

characterized by their simplicity and ease of implementation, relying on predetermined knowledge and design control 

principles. However, these strategies often fall short of achieving optimal fuel economy. On the other hand, optimization-

based strategies employ techniques such as dynamic programming, Pontryagin's minimum value principle, and model 

predictive control. Dynamic programming[2], while providing optimal fuel economy, requires pre-determined global 

operating conditions and extensive computational resources, making real-time optimization challenging. It is often used 

as a benchmark for comparing other strategies. The Pontryagin minimum value principle -based strategy achieves 

optimization by minimizing the Hamilton function and requires relatively lower computational resources compared to 
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dynamic programming[3]. Some researchers have also utilized real-time optimization algorithms like model predictive 

control for online rolling optimization of control variables, which depends on the length of the control and prediction 

domains for real-time performance. In summary, optimization-based strategies demand significant computational 

resources and exhibit limited adaptability to unknown conditions. 

In recent years, with the development of artificial intelligence technology, energy management strategies based on learning 

strategies have gradually become a research hotspot in the field of FCHEV energy management. At present, they can be 

further divided into neural networks and reinforcement learning. The strategy uses the powerful nonlinear modelling ability 

and classification prediction ability of the neural network to obtain the optimal fuel economy through working condition 

classification, speed prediction, parameter optimization, etc; the reinforcement learning algorithm directly learns the 

optimal control strategy from the data, enabling intelligent agent explores the external environment, obtains feedback 

signals and updates policies, and realizes model-free, end-to-end control[4], [5].  

1.3 Motivation 

With the development of fuel cell research, some researchers have proposed fuel cell EMS based on degradation perception. 

Ref [6] designed a two-stage EMS, the first stage does not consider the SOH of the fuel cell, the second stage considers 

the health status of the fuel cell and adds fuel cell aging constraints into the controller, so as to ensure the improvement of 

fuel economy while reducing fuel cell degradation. Ref [7] proposes a long-term fuel cell EMS, the proposed EMS changes 

the SOC boundary of the battery, and uses simulation to show that the proposed EMS can slow down the degradation of 

fuel cells and lithium batteries. Ref [8] proposed a degradation-aware multi-objective EMS based on the fuzzy control 

method, and used the fuel cell SOH evaluator to divide the fuel cell SOH into four levels. Ref [9] proposed the optimal 

cost EMS, and by calculating the empirical degradation rate of fuel cells under different operating conditions, but most 

studies used empirical functions to estimate the degradation of fuel cells over time or classify the state of fue l cells into 

several stages . Therefore, this study adopts a data-driven approach to optimize the fuel cell mechanism model, and studies 

the fuel cell energy management strategy based on the model. 

The rest of the paper is divided into four main sections a s follows: Section 2 presents the powertrain model of the studied 

vehicle and the aging model of fuel cells and lithium batteries. Section 3 proposes an EMS based fuel cell aging model, 

and presents training and simulation results in Section 4. In Section 5, the research results are summarized. 

2. POWERTRAIN MODEL 

2.1 System configuration 

The vehicle model investigated is and the topology of its powertrain is shown in Fig 1. 

 
Figure.1. Powertrain Topology of FCHEV Vehicle 

The powertrain configuration composed of a driving Motor, the output power source of Hydrogen FC, and a power source 

of li-ion battery. Besides, the li-ion battery is chosen as the energy storage system. 

2.2. The power request model 

The primary power source for FCHEV is FC. Unidirectional DC/DC conveter serves as an intermediate layer for linking 

FC to DC bus, and as a regulator for maintaining the state of SOC of battery at a  proper level, on the premise that FC is 

working in high efficiency field. By applying the bi-directional DC/DC converter, the battery has ability to provide or 

absorb the rest power through DC bus. Additionally, DC/AC inverter generates any desired power for driving motor to 

drive the vehicle for meeting the driver’s demand. 

The vehicle model is used to obtain the required power on the power bus. The required power Preq is function of the vehicle 

speed v, which is given by (1), as follows: 
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Where m is the mass of vehicle, g is the gravity acceleration, CD is the cofficient of air resistance,  is the density of the 

air, f is the rolling resistance of vehicle. 

2.3 Powertrain system model 

2.3.1 Fuel cell model 

The proton exchange membrane Fuel-Cell as major power source for FCHEV convertsthe chemical energy into electric 

energy through the reaction betweent hydrogen and oxygen. The output voltage of FC is expressed as:  
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The maximum power of the studied fuel cell is 30kW, and the rated power is 25kW. It consists of 240 single cells. The 

hydrogen consumption rate of the studied fuel cell system measured by experiment. 

2.3.2 Battery model 

The most classical method to estimate SOC of battery can be expressed as: 
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Where E is the Open circuit voltage, Rb is the charge and discharge resistance of the lithium battery, and Pb represents the 

output power of the lithium battery. 

2.3.3 Fuel cell aging model 

The degradation of stack is one of the main factors affecting the development of fuel cell vehicles. The key of fuel cell 

degradation is mainly due to changes in external working conditions, which lead to severe fluctuations in reaction 

conditions such as temperature, humidity, and pressure inside the stack. The most influentia l working conditions mainly 

include start-stop, rapid load change and other working conditions. Therefore, this paper uses the fuel cell decay rate model 

to measure the life extension performance of the energy management strategy. 

( )( )dr 1 1 2 2
Kp k n k t  = + +

              (6) 

Where dr represents the aging rate after cyclic working conditions, Kp represents the correction coefficient, which is 

used to measure the difference between the experimental situation and the simulation situation, n1, t2 represent the number 

of start-stops and load-changing time, respectively, k1, k2 are two kinds The attenuation rate corresponding to the working 

condition,  is the natural attenuation rate.  

3. ENERGY MANAGEMENT STRATEGIES 

Relying on the EMS, this module determines the power distribution between the fuel ell system and the battery system. 

Considering the constraints of the system, the EMS in this work aims to achieve best fuel economy, maintain battery SOC 

and slow down the fuel cell aging. To obtain an adaptive strategy, the deep Q reinforcement learning is applied. 

Generally, the energy management problem in the form of RL is represented as Markov decision process (MDP). In the 

following subsections, the DQN agent is presented and the settings for training are explained. After the training process, 
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the trained policy obtained from the DQN agent is utilized as the EMS. In Fig, an overview of the DQN based energy 

management for the fuel cell vehicle is displayed. 

3.1. DQN Algorithm 

In the area of RL, an MDP is applied to represent the interaction between an agent and its enviromnet. According to the 

current state s of the enviroment, an agent performs an action a that follows a policy for the enviroment. Meanwhile, the 

agent receives a reward R for performing the action and a new state s’ from the enviroment. Based on this feedback, the 

agent updates the policy. Its target is to find the policy   which maxminzes the action-value function. Hereby, the action-

value function, also known as the Q function is specified as the expected discounted sum of rewards:  
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Where R is the single-step reward and  in the range of [0,1], represents the discount factor to future reward value. The Q 

function represent the accumulated value of the long term expected reward and is exploited to measure the advantages of 

taking action a under the states. Optimal Q function Q* can be defined as:  

*
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And thus the strategy can choose action a by: 
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We define an experience pool to store the data that nerual network needed, the form of experience pool in this research is 

quadruplet (s, a, r, s’) that contains the current state s, the agent action a, the immediate reward after executing the action 

r, and the state at the next moment s’. In order to avoid correlations of data getting from driving cycle, the experience 

replay method is employed to smooth overchanges in the data distribution and reduce training difficulty.  

3.2 DQN based energy management 

As in the DQN configuration shown in Fig.2 the training enveiroment including the entire vehicle model interacts with the 

DQN-based agent. The settings of agent actions, enviroment states, and rewards are critical to the interaction and learning 

of the agent. In this subsection, the setup of the DQN-based energy management is explained in detail. 

 
Figure.2 DQN-based strategy EMS diagram. 

3.2.1 DQN-based agent actions 

The agent controls the power output of the fuel cell system. Thus, the desired fuel cell power is a direct control inp ut to 

the enviroment, where the fuel cell system is automatically controlled by its own DC/DC converter to achieve the desired 

power output. Therefore, the action is defined as 
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3.2.2 Enviroment states 

In this research, the agent needs proper states information to reasonably manage the power. The power demand of the 

vehicle Preq, the output power of the fuel cell system Pfc, the battery state of charge SOC, Motor current velocity V and 

acceleration acc are set as state variables. 

fcs={P , , , , SOC}req P v a
                      (11) 

3.2.3 Rewards 

In order to guarantee the regular iteration of the network, the reforcement learning single step reward function R needs to 

be defined, reward function is one of the key factors in determining the performance of the DQN. Fuel consumption, SOC 

stability, and the remaining life of fuel cell should be take into consider by defining the reward function.  
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Where , ,  is the cofficient of fuel consumption, SOC deviation and the degradation rate of fuel cell. The parameters 

in rewards is listed in Table.1. 

Table.1 Parameters in Reward 

Coefficient Value 

  1 


 

350 


 

2.5 

 

3.3 Enviroment settings for training 

The number of hidden layers are set to 4 and all of them are fully-connected sigmoid layer consisting of 500 rectifier units. 

The output layer is a fully-connected linear layer with a single output for each action, where the number of actions as 

described above is 6. The exact procedures of DQN algorithm in this research is demonstrated in Table and the parameters 

in neural network is listed in Table.2. 

Table.2. Parameters in deep nerual network 

Description Value 

Training episodes 1500 

Memory capacity N 10000 

Batchsize 64 

Learning rate 0.0001 

Discount factor 0.99 

The computation process of the whole DQN-based energy management strategy presented in Fig, and the whole work is 

programmed and realized in Python. 

4. TRAINING AND SIMULATION RESULT 

4.1. Training settings 

For the proposed DQN energy management strategy (DQN-EMS), a training procedure should be performed before testing. 

To fully explore the policy, the original exploration rate of DQN agent will set as 1 and when the exploration rate of DQN 

agent reach 0.1, it will be stopped decrease. At the beginning of the training process, the replay buffer acquires the memory 

data in the first ten training episode. The speed profiles are randomly generated for each episode. 

4.2. Impact of the reward settings on convergence 

The reward setting is critical for training convergence. In this work, the SOC of the battery can very greatly due to the 

large power dynamics of the vehicle. When the SOC reaches the system limits shown in Table, the reward of this training 
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episode will be given a large penalty. To achieve adaptive maintenance of the SOC and fast convergence of the training, a 

penalty term is introduced. 

4.3. Simulation results and analysis 

In order to evaluate the proposed DQN-EMS, a test speed profile of the CycleRun from European shown in Fig.3 is utilized. 

A typical fault in the reinforcement learning is the overfitting, which results in promising performance on the training 

cycles while not on the test cycles. To investigate the transferability and adaptability of the proposed DQN-EMS, another 

test profile of the CycleRun shown in Fig is used. In the following subsections, results on battery’s charge-sustraining, fuel 

cell aging and optimality of the operational cost are presented. 

 
Figure.3. NEDC driving cycle 

4.3.1. Battery’s charge-sustaining 

To investigate the performance of DQN-EMS in terms of battery’s charge-sustaining, the simulations are performed with 

different EMS strategies while the reference SOC remains at 0.6. The results of fuel cell power and SOC trajectories are 

displayed in Fig.4  

 
Figure.4. SOC trajectory in DQN and Rule-based strategy 

4.3.2 Fuel cell aging 

To evaluate the aging behavior of fuel cells under the proposed DQN-EMS, a reference DQN-EMS without the fuel cell 

aging term in the reward function is uesed for comparison. From the fuel cell power trajectories in Fig 5a and b, it can be 

seen that the proposed DQN-EMS controls the power output of fuel cell system less dynamically than the reference Rule -

based EMS.  

 
Figure.5. Fuel consumption distribution of fuel cell working points in both strategies 

4.3.3. Optimality of operational cost 

The operational cost of the vehicle consists of the hydrogen cost. To verify the optimality in the opearational cost of the 

DQN-EMS, the Rule-based EMS strategy is used as the benchmark. To show the improvement of the proposed DQN-

EMS strategy, the DQN-EMS without considering aging is used for comparison. The simulation results are presented in 

Table. 
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Table.3. The fuel consumption of three strategies 

Algorithm Fuel consumption 

(g/100km) 

Fuel economy (%) 

Rule-based strategy 876.96 - 

DQN (considering with aging) 648.12 26.09 

DQN (considering without aging) 641.2 26.906 

It can be seen that the hydrogen cost with the proposed DQN-EMS is generally lower to the benchmark. It is because of 

the lack of global optimization, the proposed DQN-EMS reacts to the timely power demands and manages higher power 

dynamics than the DQN-EMS without considering aging, resulting in larger voltage degradation, especially in voltage 

cycle (VC). Compared to the strategy without considering aging, the proposed DQN-EMS indicates up to 0.9% 

improvement in the total operational cost.  

5. CONCLUSIONS 

This research reports a deep reinforcement learning-based energy management strategy for FCHEV that takes fuel cell 

aging into account. In order to improve the prognosis for the aging of the fuel cell system, an operation mode -oriented 

estimation approach is proposed. Based on the vehicle model, an energy management issue is created using a reinforcement 

learning structure, and it is then solved using DQN, one of the most advanced DRL algorithm. A stochastic training 

environment based on CycleRun is used to produce more realistic simulations and prevent overfitting. Through the DQN 

agent's contact with the environment, training is accomplished. Following training, the suggested DQN-EMS results 

demonstrate a promising capacity for SOC maintenance.After training, the result of proposed DQN-EMS shows promising 

ability for SOC maintenance. The proposed DQN-EMS reduce the voltage degradation compared to the reference DQN-

EMS without considering aging. Moreover, the overall operational cost is investigated for the two strategies and a 

benchmark strategy. The proposed DQN-EMS show results has lower fuel consumption to the benchmark with an 

improvement compared to another strategy. In future work, more available information that facilitates approaching the 

benchmark optimum will be considered to futher reduce overall operational costs. 
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