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ABSTRACT 

This paper compares and contrasts different combinations of scatterfield and scatterometry optical configurations as well 
as introduces a new approach to embedding atomic force microscopy (AFM) or other reference metrology results 
directly in the uncertainty analysis and library-fitting process to reduce parametric uncertainties.  We present both 
simulation results and experimental data demonstrating this new method, which is based on the application of a Bayesian 
analysis to library-based regression fitting of optical critical dimension (OCD) data.  We develop the statistical methods 
to implement this approach of nested uncertainty analysis and give several examples, which demonstrate reduced 
uncertainties in the final combined measurements.  The approach is also demonstrated through a combined reference 
metrology application using several independent measurement methods.  
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1. INTRODUCTION 
Recently, there has been significant research investigating new optical technologies for critical dimension and overlay 
metrology for the 45 nm node and beyond.  This work has been focused in two primary areas, scatterometry and more 
recently, scatterfield microscopy, a technique that combines well-defined angle-resolved illumination with image 
forming optics [1-4].  Experimental results have demonstrated nanometer-scale accuracy across a range of targets using 
angle-resolved scatterfield microscopy [5].  In this work the reflected intensity is measured using a well-characterized 
optical microscope operated in a scanned illumination mode.  The experimental signatures are then compared with 
electromagnetic scattering simulations using a comprehensive parametric analysis.  Although the introduction of an 
optical train significantly expands measurement system and target flexibility, the use of these hardware components 
introduces optical errors, which must be correctly normalized.    
  
When modeling optical measurements, a library of curves is assembled through electromagnetic simulation over a multi-
dimensional parameter space.  A least square fitting routine is then used to choose the optimum set of parameters that 
yields the closest experiment-to-theory agreement.  This approach assumes that the model is adequately describing the 
physical conditions and that an acceptable goodness of fit is achieved with the best set of parameters.  However, 
parametric correlation, measurement noise, and model inaccuracy all lead to measurement error and measurement 
uncertainty in the fitting process [6].  Physical modeling inaccuracies and measurement noise can in principle be 
addressed directly through improved hardware, better sample parameterization, and improved optical characterization 
and normalization procedures.  However, fundamental limitations exist as a result of parametric correlations.  
 
Cross-correlations between parameters can lead to significant uncertainties even when a measurement technique 
demonstrates good sensitivity to a single parameter.  As an example, an angle scan may have excellent sensitivity to a 
variation in the critical dimension (CD), but if that parametric response is coupled to a change in sidewall angle, then it 
reduces ones ability to identify the individual parameter that is changing.  This ambiguity can lead to large measurement 
uncertainties in those parameters of interest.  In this paper we outline a strategy to decouple parametric correlation and 
reduce measurement uncertainties.  These techniques are applied to scatterometry and scatterfield measurements.  The 
basis for this new approach is the systematic combination of multiple measurement methods designed specifically to 
reduce cross-correlation effects, resulting in reduced uncertainty in a given parameter of interest.   
*silver@nist.gov; phone 1 301 975-5609; fax 1 301 869-0822; www.nist.gov 

Keynote Paper

Metrology, Inspection, and Process Control for Microlithography XXIII, edited by John A. Allgair, Christopher J. Raymond
Proc. of SPIE Vol. 7272, 727202 · © 2009 SPIE · CCC code: 0277-786X/09/$18 · doi: 10.1117/12.816569

Proc. of SPIE Vol. 7272  727202-1



 
 

 
 

The goal is to improve measurements of those attributes that affect device performance or enable better process control.  
For example, when measuring CD, which is correctly broken into top CD, middle CD, and bottom CD, it may also be 
important to know line edge roughness (LER) and other geometrical properties of interest.   This becomes complicated 
with optical measurements because we need to know the optical properties of the sample materials and there may be 
several different materials present and each of the materials has an estimated, but not perfectly known set of optical 
properties as well as height and geometry. 
 
Recent studies have shown that OCD measurements are fundamentally limited by the correlation between measurement 
and fitting parameters [7].  The fundamental resolution and accuracy limits are due to the uncertainty and underlying 
correlation between sample characterization parameters and instrument parameters. If there is measurement noise or 
uncertainty in a measurement/tool parameter exists, the extent to which one can know the value of any given geometrical 
or materials parameter is limited.  Ultimately the excellent sensitivity of optical metrology presents itself as a “double 
edge sword” with a price in parametric correlation and uncertainty. 
 
The statistical approach that we have developed allows us to bring together different measurement techniques that may 
each have their own best attributes, such as excellent bottom width response versus sensitivity to sidewall changes or 
alternatively high throughput/good sensitivity production worthy metrology versus low throughput and excellent 
accuracy reference metrology.  This approach allows us to combine the uncertainties of two individual measurements 
and arrive at a combined measurement uncertainty that is an improvement over the individual tools.  Reference 
metrology performance can then be enhanced with input measurements from conventional reference instruments or a 
priori manufacturing knowledge used to restrict a fitting variable.   
 
The goal of this work is to develop the statistical basis to use a priori information either gleaned from other 
measurement instruments or known based on physically relevant constraints.  As an example, although n and k values 
can be independently measured, we should not use them in optical fitting routines as a fixed variable.  They must be 
allowed to float.  This approach allows us to effectively limit the range of float using known parameter estimations or 
uncertainty.  In this application, the simulation volume of the n dimensional space can be minimized substantially, 
thereby reducing both simulation/processor time and library fitting time. 
 
Although many of the examples discussed here will use optical techniques for illustration purposes, the same strategy is 
applicable to other measurement methods, such as scanning electron microscopy (SEM). 
 

2. THE SCATTERFIELD HARDWARE PLATFORM AND DATA ACQUISITION 
The technique of scatterfield microscopy has been described in detail elsewhere [8].  The basic instrument is based on a 
Köhler illuminated bright field microscope with a large accessible conjugate back focal plane.  Data are acquired as a 
function of angle as shown in Figure 1. A charge coupled device (CCD) image is captured at each angle.  A window 
(kernel) is placed in the image, the total intensity for that window is integrated and a normalized intensity per unit area is 
calculated.  The intensity is then plotted as a function of angle.  The intensity pattern may include only a zero-order 
specular reflection component or higher order diffraction components.   
 
This mode of operation is similar to conventional scatterometry except that the high magnification optical train allows 
small targets or several targets to be measured simultaneously.  We can perform massively parallel scatterometry 
measurements throughout the field of view by breaking the imaged field into an array of small targets or pixel groupings.  
Alternatively, we can perform scatterometry-type measurements on very small, embedded targets since the signals are 
spatially resolved.  
 
Accurate modeling capabilities are a requirement when using optical methods that rely on library-based fitting.  This, in 
turn, necessitates proper experimental normalization procedures to ensure accurate angle-resolved measurements.  
Although described in Ref. 8, a background is acquired for each image as a function of angle, either directly during 
image acquisition or at a nearby site.  The angle-resolved background scan is then normalized using a known silicon 
reflectance.  The image is then normalized to this background allowing the experimental data to be accurately compared 
to theory.  This is essential due to the suite of tool-dependent effects that must be compensated. 
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Fig. 1. Schematic of the experimental apparatus is shown in the upper figure.  The lower portion shows the scan axes, a set 
of silicon normalization curves and the resulting data after raw angle-resolved reflectivity data are accurately 
normalized. 

Once the data are acquired and normalized, they can be analyzed using library-based fitting techniques.  The data are 
compared to simulation after building a comprehensive modeling library that typically involves a parametric analysis 
that includes varying n and k, height, pitch, sidewall, and CD.  The starting point range for the geometrical parametric 
variations is typically based on atomic force microscopy (AFM) reference metrology that is provided with sidewall 
values and full uncertainty analysis or CD SEM reference values.   
 
Comprehensive simulations were completed for the line arrays shown throughout this paper using an rigorous coupled 
waveguide analysis (RCWA) model while an finite difference time domain (FDTD) model was used for more 
complicated three-dimensional structures [9-10]. It can be seen in the analysis that the n and k parameters have a 
substantial effect on the intensity curves.  Once an appropriate simulation library has been generated, a chi-squared 
analysis has been historically used to determine the best least square fit and evaluate the uncertainties in the fitting 
process [7]. 

 

3. CHI SQUARED UNCERTAINTY ANALYSIS 
3.1 Basic formalism 

The derivation of a general formula for multiple floating parameters is well-established [11].  We show the derivation of 
this formula for two parameters below to relay the importance of mathematical correlation effects and their physical 
meaning in the treatment of parametric uncertainty. 

We start from the general linear least squares data fitting model and attempt to minimize the quantity 
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where a represents all floating parameters, σi is the uncertainty for each floating parameter, a1...aN, yi is the the 
measurand, and y(xi; a) is the simulated value for yi at a given location within our parameter space a.  It can be shown 
that the propagation of errors leads to a sensitivity matrix with elements 
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where ai and aj are separate floating parameters, e.g. critical dimension (CD) and line edge roughness (LER).  The 
inverse of this sensitivity matrix is the covariance matrix, Cjk, where the estimated variance of a specific parameter is 
given by the diagonal elements 
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An example of a set of data is shown in Figure 2.  These data demonstrate good agreement between the simulated library 
of curves and the experimental data using the experimental normalization procedure described above.  The goodness of 
fit values and residuals are acceptable; however, the uncertainty in the fitting process is greater than desired, 1 nm to 2 
nm, 1σ.  This is an example in which correlation effects due to cross-correlation between the several fitting parameters 
and measurement noise are introducing uncertainty in the final results and ultimately undermining the confidence limits 
in the measurements. 

Top = 120 nm 
Middle = 112 nm
Bottom = 143 nm

Top = 115 nm 
Middle = 110 nm
Bottom = 136 nm

Top = 118 nm 
Middle = 107 nm
Bottom = 142 nm

 
Fig. 2. An example of experimental data and library data fits for three die from the overlay metrology advisory group 

(OMAG) 3 wafer.  Good agreement with the reference values was obtained for the top and middle CDs. 

To better understand the cause of correlation effects, we can look at the sensitivity matrix and covariance matrix and 
examine the effects of parametric correlation.  To illustrate the role of the sensitivity matrix in the uncertainty analysis, 
we will focus on a simple two-parameter case.  Suppose we have a given line width sample with an unknown CD and 
unknown LER. If we note CD as a1 and LER as a2, we can display the entire 2x2 sensitivity matrix as  
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Taking the inverse of the sensitivity matrix, we arrive at the covariance matrix, which is 
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Focusing on the uncertainty of one parameter, e. g. the critical dimension, 
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When B ≠ 0, the uncertainty of CD is increased by a cross-term factor 
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Since A > 0, D > 0, and A D - B2 > 0, it follows that F > 1 as well. Stated differently, the larger the cross-term B gets, the 
larger this multiplicative factor F becomes, increasing the uncertainty of our floating parameter.  
 
This mathematical picture becomes much more complex when more than two parameters are involved, as the 
contributions of cross-terms in the sensitivity matrix are much more convoluted than presented above. However, by 
calculating cross-term factors between each pair of parameters, we still can identify the major contributing factors to the 
uncertainties. 

 

3.2 Contact holes example 

To examine these correlation effects in more detail we next look at a more complicated three-dimensional contact hole 
process stack having several layers, thicknesses, and optical constants.  For this example we use a simulation-based 
analysis comparing spectroscopic and angle-resolved scatterometry.  The method for performing these simulation-based 
scatterometry sensitivity studies including modeled measurement and sample noise was discussed in Ref. 6.  Simulations 
of the reflected and scattered fields from patterned contact holes were calculated using a commercially-available FDTD 
model.  A schematic of the contact hole geometry is shown in Figure 3.  The dimensions of these contact hole stacks 
studied correspond to the 22 nm and 32 nm nodes.  For both cases, simulations have been performed both for scans of 
wavelength at certain fixed angles and for scans of incident angle at certain fixed wavelengths.  These are commonly 
known as “angle scans” and “lambda scans.”  For all the calculations performed, the incident light is assumed to be 
linearly polarized either in the transverse electric (TE) or transverse magnetic (TM) modes.   

TEOS 60nm

SiCOH

Silicon substrate

Etch barrier 35nm 
(SiC or SiN)

Over-etch
depth

Sidewall 
angle

Top CD

 
Fig. 3. Contact hole material stack and basic geometrical layout simulated for both 22 nm and 32 nm nodes. 

 

Proc. of SPIE Vol. 7272  727202-5



 
 

 
 

The dimensions varied in the parametric analysis include sidewall angle, critical dimension for the diameter, and over-
etch depth.  The actual dimensions for the complete analysis are based on the 32 nm node and the 22 nm node.  For the 
32 nm node, the top width is 48 nm and the bottom width is 26 nm; for the 22 nm node, the top width is 33 nm and the 
bottom width is 18 nm.  An example is shown in Table 1 for wavelength scan and angle scan uncertainty data for 
spectroscopic scatterometry and angle-resolved scatterometry for the wavelengths and incident angles indicated.  These 
data are for 22 nm node contact holes.  The data in the figure show the uncertainties for each of the parameters varied as 
well as the sensitivity matrix and covariance matrix as determined for various CDs, sidewall angles, and over-etch values 
based on a simulated fitting library used in the statistical analysis.   
 
Examination of the data shows regions of high and low sensitivity in the sensitivity matrices for both the wavelength and 
angle scans.  The diagonal sensitivity matrix elements are a direct measure of sensitivity for a given parameter; the off-
axis elements are a measure of the cross-correlation.  Uncertainties are shown for each of the three floating parameters; 
all other parameters are treated as fixed.  CD uncertainties are typically compared with 2% of the top CD width to 
determine whether a measurement has performed at an acceptable level.  Wavelength scans typically exhibit lower 
uncertainties than the angle scans when comparing the longer wavelength angle-resolved scans, while comparable 
uncertainties are achieved at the shorter wavelengths for specific polarization states, as seen in the figure.  Similar 
uncertainties were observed at each of the angles simulated for the spectroscopic scans.  However, the TM polarization 
data are interesting in that the sensitivity values are comparable to some of the wavelength scan values with the 
difference being the large correlation values in the covariance matrices.  These correlation effects are important and will 
be further examined. 

 

Table 1. These data show simulation sensitivity results, covariance matrices and the resulting uncertainties for different 
angle-resolved and wavelength-resolved scans.   Sensitivity matrix values are in units of per varied unit squared and the 
covariance matrix is in varied units squared for the diagonal elements.  Uncertainty values are 1σ. 
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Figures 4 shows reflectivity data calculated for spectroscopic scans in the top and angle-resolved scatterometry results in 
the lower part of the figure.  These data are also from the 22 nm contact hole example.  The uncertainties and covariance 
matrix are shown on the right side of the figure.  Large regions of excellent sensitivity can be seen in the angle scans, yet 
the uncertainties are better for the wavelength scans.  The angle scans are more sensitive than wavelength scans in this 
example.  It is the larger cross-terms in the covariance matrix that lead to larger uncertainty values for CD, sidewall, and 
over-etch.  It is important that the analysis with respect to parametric correlation highlights the double-edged sword of 
sensitivity as it can manifest itself in a potentially large cross-correlation between the floating parameters. 
 
This raises the question of whether measurement uncertainty can be improved by restricting the range of floating 
parameters with reference metrology.  Can we integrate SEM and optical measurements with appropriate sampling 
strategies or develop a best combination of angle scans and spectroscopic scans to optimize uncertainties by reducing 
correlation effects?  The schematic on the left in Figure 5 illustrates the effect of small changes in two parameters and 
the resulting shift in the optical intensity profiles.  If the two parameters are correlated, then the upshift in the reflectivity 
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curve could be due to a change in parameter a1 or a2.  If the effective floating range were reduced or known for one 
parameter, then the remaining movement in the curve could be attributed to the other parameter.   
 

Lambda scan θ = 0°

Angle scan λ = 193 nm

TE Mode TE Mode

Wavelength (nm) Wavelength (nm)

In
te
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In
te
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ity

22 nm 
node σCD σsidewall σover etch covariance matrix 

lambda 
scan, 
0°, TE

0.212 0.12 0.258 
0.045 19.6 0.0386
19.6 1.47e+04 19.5

0.0386 19.5 0.0664

angle  
scan, 

193nm, 
TE 

0.571 0.58 1.412 
0.326 321 -0.69

321 3.37e+05 -759
-0.69 -759 1.99

 
 

Fig. 4.  TE and TM scans for different sidewall angles varied by 0.5o are shown.  Angle scans are more sensitive than 
wavelength scans in this example. The parametric correlation analysis highlights the large correlation between floating 
parameters.  The cross-terms in the covariance matrix lead to larger uncertainty values.  

Without reference data or metrology, the confidence intervals of the fitting parameters have to enclose the elongated 
ellipse area seen on the right side of the figure.  By employing the reference metrology in the parameters, we can 
enhance our confidence interval in the other correlated parameters. 
 

 
 

Fig. 5.  An illustration of the effects of movement in an optical intensity profile (left) from an unknown change in the optical 
parameters and the resulting confidence limits (right). 
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4. NON-LINEAR REGRESSION 
 
4.1 Derivation 

In this section, we first develop the non-linear regression model and then expand this model using a Bayesian approach 
to include the a priori information.  The goal is to develop a rigorous method to embed reference metrology or other a 
priori information gained by knowledge of manufacturing variability or alternative physical constraints. 
 
We assume that in a regression setting, Y is the dependent variable, e.g., intensity, and X is an independent variable, e.g., 
λ  or θ . In general a complete set of measurements consists of N data points obtained under a varying set of conditions 
for both simulations and experimental measurements.  The ith data point represents the condition under which i = 1,…,N 
measurements were made.   The K model parameters are expressed as a vector 1{ ,..., }Ka a a=

r
, and represent the 

model input parameters, for example, CD, sidewall, height, etc. We have N measured values of Y denoted as 

1{ ,..., }Ny y . For the ith data point the physically measured value corresponding to xi is yi.  We also have the N 

simulated values with the ith data point xi corresponding to the simulated values ( ; )iy x ar  for i = 1,…,N.  We want to 

compare the measured 1{ ,..., }Ny y  with simulated { ( ; )}, 1,..., }iy x a i N=
r

 and find the optimal estimator of the 

parameter vector 1{ ,..., }Ka a a=
r

. 
 
In general, ( ; )iy x ar  is a nonlinear function of ar , at a specific point (e.g., an initial value or an optimal value) of 

1(0) { (0),..., (0)}Ka a a=
r

.  Using a first-order Taylor expansion, an linear approximation of the nonlinear regression 
is given by 
 

1 (0)

( ; )( ; (0)) ( (0)) (0)
K

i
i i k k i

k k a a

y x ay y x a a a
a

ε
= =

⎡ ⎤∂
= + − +⎢ ⎥∂⎣ ⎦

∑
r r

r
r

,   (9) 

where εi(0) is an approximation error that we want to minimize [12].  By re-parameterization, the model can be 
expressed as  
 

1
(0) (0) (0) (0)

K

i ik k i
k

y D β ε
=

= +∑ ,       (10) 

with 
 

(0) (0)k k ka aβ = − ,      (11) 
 

(0)

( ; )(0)
a a

i
ik

k

y x aD
a

=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦ r r

r
,     (12) 

and 
 

(0) ( ; (0))i i iy y y x a= −
r

.     (13) 
 
The variance–covariance matrix of the experimental values 1{ ,..., }Ny y  is denoted by V=diag[σ1

2,  σ2
2,…,   σN

2].  The 
generalized least square estimator of b(0) is then given by  
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( ) 11 1ˆ(0) (0) (0) (0) (0)T TD V D D V Yβ
−− −= ,    (14) 

with 1

ˆ ˆ ˆ(0) { (0),..., (0)}
K

β β β=  and 
 

11 1

1

(0)..... (0)
(0) ........

(0)..... (0)

K

N NK

D D
D

D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.     (15) 

 
See Ref. 13.  The generalized least square estimator of the parameters and variance – covariance matrix is now given by 
 

ˆˆ (0) (0)k k ka aβ= +     k = 1,…,K    ,       (16) 
 
and 

 

( ) 1ˆar[ ] (0) (0)TV a D V D
−

= ⋅ ⋅
r

.     (17) 

 
When additional information from one or more parameters is available (e.g. the parameters and their uncertainties are 
obtained by AFM metrology [or other sources]), we can treat these as prior information and embed these in the model to 
obtain new parameter estimates and their corresponding uncertainties using the Bayesian statistical approach. In the 
application of this approach few parameters are treated as fixed and instead either a parameter is allowed to float freely 
or a priori information is used to estimate a mean value and its probability distribution, which has the effect of a 
weighting to limit the floating range.  In this treatment, these parameters become unknowns that have their own 
probability distributions. 
 
As an example, when the first parameter among the K parameters has a known distribution with a mean of a1

* and 

variance of σ, we obtain new parameter vector estimates of #âr and a new variance matrix of 
#ˆar[ ]V ar  by embedding 

these into the model. 
 
In this scenario, if additional information about one parameter is available, we can treat this as prior information to get 
better estimates of the parameters and their uncertainties. To use this prior information, a Bayesian approach is applied. 
Referring to the regression model above in Eqn. (10), from [14, 15], we can treat the prior information of 1β  as another 
“data point” in the regression. Thus, corresponding to (10), we have an expanded model given by 
 

* * *(0) (0) (0) (0)Y D β ε= ⋅ + ,     (18) 
 

11 1

*

1

(0)..... (0)
........(0)

(0)
(0)..... (0)

1,0.....................0

K

N NK

D D
D

D
D D

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

1
,    (19) 

 

( ) 1# * * 1 * * * 1 *ˆ (0) (0) (0) (0) (0)T TD V D D V Yβ
−− −= ,   (20) 

and for the parameter estimates  
 

# #ˆ ˆ (0) (0)k ka aβ= +
r

    for   k=1,…,K.     (21) 
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The posterior variance matrix of the parameter estimators is given by 

( ) 1# # * * 1 *ˆ ˆar[ ] ar[ (0)] (0) (0)TV a V D V Dβ
−−= = ⋅ ⋅

r
.   (22) 

 
The two-parameter example from Eqn. (6) becomes   
 

1 1

1

1 1

2 2 2 2

1
2

2 2 2 2

,

1
,

D B
AD B D AD B D

Q
AB

AD B D AD B D

β β

β

β β

σ σ

σ
σ σ

−

−⎛ ⎞
⎜ ⎟− + − +⎜ ⎟= ⎜ ⎟+−⎜ ⎟
⎜ ⎟− + − +⎝ ⎠

,    (23) 

 
and 

1

#
1 2

2

ˆ[ (0)] DVar DAD B
β

β
σ

=
− +

.    (24) 

This last equation shows the effect on the sensitivity matrix and uncertainty matrix for the previous example when 
including the a priori information.  It can be shown that the uncertainties of all parameters can be improved such that 

1,...,k K=
#[ ] [ ]ˆ ˆ
k k

Var a Var a≤ . 
 
4.2 Applications of the Bayesian Approach 

We next apply embedded uncertainties to develop reference metrology applications and to improve measurement 
uncertainties for measurement hardware compatible with high volume manufacturing.  First, we apply the statistical 
techniques to the contact hole example from Figure 3 and Table 1.  We recalculate the uncertainties with assumed a 
priori knowledge of the top CD and sidewall angles.  The first section of Table 2 shows a series of uncertainty 
calculations for various wavelength and angle scans with all three parameters floating, as labeled in the table.  The 
second and third sections show the uncertainties with an a priori assumption of 2 nm uncertainty for the top CD and a 1° 
known sidewall uncertainty distribution.   

 

Table 2. Improving uncertainties for the 22 nm node contact hole example.  Comparing the uncertainties from the lower two 
cases, the uncertainties have been reduced for all values by embedding the a priori reference data. 

λ scan
TE θ = 25°

λ scan
TM θ = 25°

λ scan
TE θ = 45°

λ scan
TM θ = 45°

θ scan
TE λ = 310 nm

θ scan
TM λ = 310 nm

σCD 2.98 2.92 3.83 2.66 17.10 1.83

σSWA 0.70 0.70 0.90 0.68 8.21 0.61

σOveretch 1.47 1.36 1.86 1.23 6.70 0.67

Uncertainties with 2 nm Top CD reference

Uncertainties without a priori information σnoise = 1 % 

λ scan
TE θ = 25°

λ scan
TM θ = 25°

λ scan
TE θ = 45°

λ scan
TM θ = 45°

θ scan
TE λ = 310 nm

θ scan
TM λ = 310 nm

σCD 1.66 1.65 1.77 1.60 1.99 1.35
σSWA 0.53 0.54 0.52 0.44 2.08 0.49

σOveretch 1.41 1.30 1.64 1.20 1.38 0.67

λ scan
TE θ = 25°

λ scan
TM θ = 25°

λ scan
TE θ = 45°

λ scan
TM θ = 45°

θ scan
TE λ = 310 nm

θ scan
TM λ = 310 nm

σCD 0.59 0.58 0.76 0.53 1.90 0.36
σSWA 0.14 0.14 0.18 0.13 0.85 0.12

σOveretch 0.29 0.27 0.37 0.25 0.72 0.14

Uncertainties with 1.0o Sidewall Angle reference
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The next application of the Bayesian embedded metrology approach is to the L100P300 etched silicon target, Table 3.  
In this experimental example, best fit values and uncertainties are shown for the regression analysis with and without 
embedded AFM reference metrology [16].  The data show a change in the mean values as well as an improvement in the 
uncertainties.  The effects of the embedded reference measurement data are to pull the OCD scatterfield results toward 
the AFM measured values.  The resulting uncertainties from the combined measurements are lower than each of the 
individual measurement results. 
 
 

Table 3. A chart showing OCD measurements with and without embedded AFM reference metrology.  The data show 
reduced uncertainties in the combined analysis. 

141132.8143Bottom

115117.3112Middle

121119.2120Top

OCD w/ 
AFMAFMOCD 

Fitting

0.420.750.78σBottom

0.600.751.58σMiddle

0.350.751.05σTop

OCD w/ 
AFMAFMOCD 

Fitting

 
 
 

5. REFERENCE MEASUREMENT ARCHITECTURE 
In this section, we demonstrate the combination of four different measurement techniques into a monolithic optical 
measurement.  Although the three reference measurements are embedded in the optical fitting process, the influence of 
each measurement result is weighted by its associated measurement uncertainty, thereby resulting in an integrated final 
measurement.  AFM, SEM, CD X-ray scattering (SAXS), and OCD were all used to measure line patterns etched into a 
nitride film on a polysilicon substrate.  A standard focus exposure matrix (FEM) was used to create etched line arrays.  
An example of the various reference measurement data is shown in the lower part of Figure 6. The two graphs in the top 
of the figure show the parametric fitting results using angle-resolved scatterfield microscopy intensity profiles.  For these 
optical data the top, middle and bottom CDs were allowed to float as well as the nitride layer thickness and the optical 
properties for both the nitride and the substrate.  Allowing all of these parameters to float was essential to obtaining good 
agreement.  The data show typical results for the various die across the FEM field. Although most measurements across 
the wafer agree within a couple of nanometers on the mean CD, the methods yielded discrepant sidewall angle values.  
This comparison was carried out in four different laboratory locations, and the results were not normalized or offset with 
respect to one another to obtain better agreement.  No special care was taken to match the results, but rather they were 
used as independent evaluations of the measurand. 
 
The residuals and goodness of fit are good for this optical parametric fitting example.  The uncertainties, however, in the 
optical fits are not adequate due to a combination of low sensitivity and correlation between parameters.  This regression 
fit will benefit from embedded reference metrology.  
 
Another attribute or complication of the fitting process is observed when two local minima are near one another.  In this 
situation, the residuals from two sets of parameters are close in value and the least square fitting routine or regression fit 
may return an incorrect value.  This is essentially a uniqueness problem that arises randomly, depending on how well 
behaved the n dimensional parameter space is and where the best fit resides in this space.  The embedded uncertainty 
distributions represent a solution to this problem as they help the regression algorithm “snap” to the correct minimum.  
Figure 7 is an example showing two minima near to one another.  The best fit has a slight undercut and is, in fact, the 
incorrect solution based on reference metrology.  When AFM data are embedded, the regression algorithm selects the 
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second minimum as the best fit.  Although the residuals and apparent goodness of fit values are slightly worse, the 
correct values are selected. 
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Fig. 6. The top graphs show four scatterfield OCD scans representing two polarizations and two scan axes.  The agreement 

between simulation and experiment is good for both die based on an absolute measurement using the standard 
normalization procedure.  The lower tables show the various reference measurements for each die. 
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Fig. 7. This experimental example demonstrates the effect of local minima with similar residual values.  Often the parameter 

set will “snap” between two sets of values. The graphs on the right show the subtleties in curves for nearby minima. 

This example of local minima demonstrates both a reduction in uncertainty and the selection of the correct measurement 
value.  We have observed this multiple minima effect multiple times throughout several more exhaustive OCD studies.  
The lower table in Figure 7 shows the uncertainty improvements resulting from the embedded reference measurement.  
All five floating parameters in this case are “snapping” between two local minima.  In our standard algorithm output, we 
report the first ten minima and this type of effect is easily uncovered using this analysis algorithm. 
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The final example combines all four reference measurement techniques as shown in Table 4.  These data show only 
scatterfield OCD parametric fitting results, OCD combined with bottom width CD SAXS, and a combination of all four 
measurement methods.  The CD SAXS and CD SEM measurements were not reported with complete expanded 
uncertainties. As a result, 2 nm 1σ expanded uncertainties were assumed solely for demonstration purposes.  These data 
again show a substantial reduction in the measurement uncertainties.  
 
 

Table 4.  This example demonstrates the combination of multiple measurement methods.  First, mean values and 
uncertainties for OCD are reported, followed by embedded CD SAXS bottom width data.  The combination of all four 
measurement results with the assumptions described in the text is shown in the last column 

 

CDTop = 53 ± 4.4 nm
CDMid = 55 ± 2.3 nm
CDBot = 74 ± 1.7 nm
h = 56 ± 0.5 nm
n = (nstated) ± 0.2 % 
CDBot,. SAXS  embedded

CDTop = 53 ± 2.6 nm
CDMid = 55 ± 1.1 nm
CDBot = 74 ± 1.2 nm
h = 56 ± 0.4 nm
n = (nstated) ± 0.1 % 
AFM, CD SAXS, and CD 

SEM embedded

CDTop = 53 ± 4.5 nm
CDMid = 55 ± 2.9 nm
CDBot = 74 ± 3.5 nm
h = 56 ± 0.6 nm
n = (nstated) ± 0.3 % 

OCD only parametric fit
 

 
One important aspect to highlight in this work is that the method of reporting uncertainties has an immediate impact on 
the weight given to any embedded component.  It is important to draw a distinction between repeatability measurement 
distributions and expanded uncertainty measurement distributions [17].  Although discussed in depth in Ref. 18, the 
major difference is the incorporation of simply measurement repeatability versus systematic components, such as errors 
in the geometry modeled or uncertainties in the measurement wavelength and angle.  The optical modeling and library-
fitting technique, depending on the parameters floated, necessarily includes some of the systematic uncertainty 
components such as sidewall variation, optical constants, and layer thickness to the extent that these parameters were 
floated.   

6. CONCLUSIONS 
Scatterfield microscopy was used to demonstrate quantitative measurements of dense line arrays with dimensions that 
result in only specular reflected light.  Although the technique was applied to larger scatterometry arrays that fill the 
optical field of view, this technique is capable of scatterometry-type measurements on very small targets, enabling chip 
applications with reduced target size.  This also allows for parallel measurements of multiple targets having potential 
applications in both CD and overlay metrology.  Using accurate background normalization and optical tool 
compensation, quantitative modeling was demonstrated. Nanometer-scale measurements can be achieved using angle-
resolved microscopy. Next generation tool development includes a 193 nm scatterfield metrology tool as well as a new 
spectroscopic scatterfield instrument.  Both tools are now operational and are expected to yield lower measurement 
uncertainties.  
 
A new approach to embedded metrology was presented and demonstrated to improve reference metrology uncertainties.  
It has applications in both reference metrology and process control metrology.  This Bayesian approach enables the 
rigorous combination of diverse metrology solutions, and it can be applied to multiple measurement instruments to arrive 
at a monolithic measurement result that combines the individual components based on or weighted by their individual 
uncertainties.  This provides an immediate method to improve reference metrology uncertainties and enables a new 
architecture or systems approach to reference metrology. 
 
This new method has important implications in devising measurement strategies that take advantage of the best 
measurement attributes of each individual technique.  This includes both sensitivities to geometrical aspects or materials 
attributes as well as consideration of measurement throughput.  Experimental examples were used to demonstrate the 
embedded uncertainty approach including an example that combined optical measurements of n and k with thickness 
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measurements from independent tools.  These data demonstrate substantial effects on the resulting OCD measurements 
and uncertainties.  This was given as an example implementation to describe applications in a production environment. 
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