Fan-beam coherent scatter computed tomography (CSCT) is a novel X-ray based imaging method revealing structural information of tissue under investigation. The source of contrast is the angular-dependent coherent scatter cross-section, which is determined by the molecular structure. In this work a phantom consisting of water, tricalcium phosphate, collagen and fat was used to investigate the contrast resolution of these four tissue constituents. Scatter projections were measured in fan-beam 3rd generation CT-geometry using an experimental demonstrator set-up equipped with a 4.5 kW DC power X-ray tube and photon-counting detectors. Reconstruction was performed using two algorithms, one based on algebraic reconstruction technique (ART) and the other based on filtered back-projection (FBP). The reconstruction results of the two techniques are compared. Furthermore, scatter functions of the four components were extracted from the 3D data sets and compared to previous measurements. The applicability of this technique for medical diagnosis is discussed.
Fan-beam coherent scatter computer tomography (CSCT) has been employed to obtain 2-dimensional images of spatially resolved diffraction patterns in order to supplement CT images in material discrimination. A Monte Carlo simulation tool DiPhoS (Diagnostic Photon Simulation) was used to create 2-dimensional scatter projection data sets of high-contrast water and Lucite phantom objects with plastic inserts. The results were used as input to a reconstruction routine based on a novel simultaneous iterative reconstruction technique (SIRT). At the same time an experimental demonstrator was assembled to confirm the simulations by measurements and to show the feasibility of coherent scatter CT. It consisted of a 4.5kW constant power X-ray tube, a rotatable object plate and a vertical detector column that could be panned around the object. Spatial resolution was ensured by mechanical collimation. Phantoms similar to those simulated were measured and reconstructed and the contrast achieved by CSCT between the materials under examination substantially exceeded that achieved in CT. A further step was taken by examining an animal tissue sample in the same way, the results of which show remarkable contrast between muscle, cartilage and fat, suggesting that CSCT can also be used in a medical scenario.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.