Miniaturized optical diagnostics might be greatly favored by the availability of effective, conformable UV light sources combining reduced size with mechanical flexibility. Here we report on our recent results on ZnO-incorporated nanofibers, exhibiting optical gain and polarized emission, used to obtain flexible UV lasers operating at room-temperature. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682157, “xPRINT”), from the Italian Minister of University and Research (PRIN 2017PHRM8X) and from the University of Pisa (PRA “ANISE”).
Transient and smart functionalities can be obtained by devices that can physically disappear in a controlled way. Water-soluble polymers and materials that can dissolve/disintegrate offer self-degradable opportunities for use in various domains. Here we report on our recent results on combinatory, transient photonics based on water-soluble compounds and sublimating materials for application in full-field imaging and labelling. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682157, “xPRINT”) and from the Italian Minister of University and Research PRIN 20173L7W8K project.
Photonic components responsive to external optical stimuli are attracting increasing interest, because their properties can be manipulated by light with fast switching times, high spatial definition, and potentially remote control. These aspects can be further enhanced by novel architectures, which have been recently enabled by the availability of 3D printing and additive manufacturing technologies. However, current methods are still limited to passive optical materials, whereas photo-responsive materials would require the development of 3D printing techniques able to preserve the optical properties of photoactive compounds and to achieve high spatial resolution to precisely control the propagation of light. Also, optical losses in 3D printed materials are an issue to be addressed. Here we report on advanced additive manufacturing technologies, specifically designed to embed photo-responsive compounds in 3D optical devices. The properties of 3D printed devices can be controlled by external UV and visible light beams, with characteristic switching times in the range 1-10 s.
Random optical media (ROM) are a novel class of photonic materials characterized by a disordered assembly of the elementary constituents (such as particles, wires and fibers), that determines unique scattering, absorption and emission properties. The propagation of light in ROM is affected by the size and optical properties (refractive index, absorption and emission wavelengths) of their components, as well as by the overall 3-dimensional architecture. So far, most of the investigated ROM have been realized using liquid dispersions or bulk samples embedding colloidal nanoparticles or porous systems. While nanowire-based ROM are poorly investigated, such materials can feature new optical effects related to the elongated shape of their building blocks and to their light-transport properties. Here we report on the fabrication and on the morphological and spectroscopic characterization of hybrid organic-inorganic nanowires, realized by doping polymers with dielectric nanoparticles. We investigate light diffusion and multi-scattering properties of 3- dimensional ROM formed by organic and hybrid nanowires, as well as field localization in 2-dimensional networks. The influence of nanowire geometry and composition on the scattering properties is also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.