Directed Self-Assembly (DSA) of Block Copolymers (BCP) by chemo-epitaxial alignment is a promising high resolution lithography technique compatible with CMOS high-volume manufacturing. It allows overcoming limitations in resolution and local stochasticity by conventional, imaging based, lithography. However, for BCP with pitches below 20 nm and guide patterning by immersion lithography (193i), multiplication factors ≥ 4 become necessary, imposing stringent requirements on the guides and defectivity becomes hard to control. The Arkema-CEA (ACE) process flow overcomes this limit by creating the guides by a self-aligned double patterning (SADP) process flow, followed by the deposition of a cross-linkable neutral mat and selective grafting of the guides. This paper reports on the transfer of the process flow to immersion lithography, details challenges encountered in process optimization, notably the dependence of the wetting of the neutral layer on the surface energy and the morphology of the spacers. Last, the paper presents a metrology and defectivity roadmap combined with preliminary, promising results.
This paper introduces line roughness characterization non-straight patterns made of block copolymers (fingerprint patterns). Line Width Roughness have been determined using Power Spectral Density based on a special edge detection developed at CEA-LETI to extract edges contours. We investigated several process parameters impact on LWR such as the degree of polymerization of different BCPs and the impact of UV irradiation on the roughness of the PS block.
Directed Self Assembly (DSA) is a promising technology for complementary patterning in future nodes. As DSA patterning has continued to evolve there has been many efforts to improve defect performance using hardware, processes, and materials. Traditionally, in PS-b-PMMA block-copolymers (BCP) based patterning schemes, phase separation is achieved using a thermal annealing with controlled temperature and time. In previous work we have expanded our understanding of BCP annealing by demonstrating the ability to improve a process window and fingerprint formation of a lamellar system (31nm pitch BCP) by atmospheric condition control during the thermal anneal, as shown in Figure 1. By reducing the oxygen concentration inside the annealing chamber, we have demonstrated improved densities for fingerprint defects commonly associated with phase separation in BCP systems. Furthermore, by achieving a strong regulation of the concentration at different levels, we have achieved a better understanding of what might be required to fully eliminate these defects for subsequent studies and learning toward device manufacture. By reducing the concentration of oxygen during the thermal anneal process, we have been able to employ noticeably higher annealing temperatures without damaging the BCP films. Ultimately, our goal is to provide an annealing solution that is amenable to high volume manufacturing. In this study, controlled oxygen annealing of a 31nm pitch BCP is evaluated against a known thermal annealing baseline. Oxygen concentration, temperature and time are finely tuned in the study. Finally, polymers with different compositions (ie morphologies: lamellar, PS cylinders, PMMA cylinders) are evaluated, and the correlation between thermal budget and polymer stability is reported.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.