Faraday anomalous dispersion optical filters (FADOFs) were used in laser frequency locking experiment as early as 1969, and later this laser was named Faraday laser. Typically, as the key element in the Faraday laser, the housing for the FADOF is machined from metal and insulation material. Here, we present an alternative to the commonly used option that utilizes 3D printing. We measure the inner magnetic field intensity of the housing for the FADOF and the transmission spectrum of our FADOF system, and show that it is sufficient for use in Faraday laser. Besides, we also characterize the performance of our Faraday laser system using atomic spectroscopy. The performance and cost of 3Dprinted FADOF housing make it an appealing option.
We present a study of the saturated absorption spectroscopy on cesium D2 line (6S1/2F = 4 → 6P3/2) induced by a multiwavelength laser and its specificity. Compared with the traditional saturated absorption spectroscopy induced by single-frequency laser, the major difference is that the peak amplitude can reach more than half of the Doppler background, and the second is that the number of the saturated absorption peaks is increased and not in the same direction, the line shape and amplitude of the spectrum change with the magnetic field. The frequency components of the multi-wavelength laser need to be studied in order to further analyze the principle of generation of the spectrum. The cesium atom laser spectroscopy induced by this unique multi-wavelength laser can be used for laser frequency stabilization. The interaction of multi-wavelength laser and atom can increase the utilization rate of the atoms, increase the signal amplitude, help to improve the signal-to-noise ratio, and then improve the frequency stability of lasers. In this experiment, the multiwavelength laser spectroscopy induced by the superposition of saturation effect, absorption effect, optical pumping effect and other physical effect is of great interest in high resolution laser spectroscopy and laser frequency stabilization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.