Recent studies have shown that a compact self-mixing interferometer can be used for the characterization of shock waves. It measures dynamically (> 10MHz) the changes in the refractive index induced by the shock wave. Associated to an appropriate acousto-optic model, the pressure profile is computed with a 34mbar resolution. In the present work, we compare shock wave induced refractive index variations measurements by another method using a Michelson-type fiber-optic interferometer with phase analysis that has been developed for Photonic Doppler Velocimetry applications. The output signals of this system are processed in triature, which consists in analyzing the phase shift between the three interferometric signals. This bulkier system provides, in theory, a better resolution than the self-mixing interferometry sensing scheme. In the present paper, we compare these two optical methods to measure a shock wave pressure through experiments that were carried out with an open shock tube instrumented with commercial, bandwidth limited, pressure sensors. This configuration creates a spherical shock wave similar to those observed during on-field experiments with explosives. We describe the two measurement systems and the experimental setup design used for overpressure characterizations. Both sensing approaches have been carried out in the same experimental conditions and with shock wave pressure peak amplitudes of a few bars. We detail the two types of signal processing and we discuss the results obtained with the two optical methods, which are also compared to a piezoelectric reference sensor.
This article presents a novel technique to acquire and visualize two-dimensional images of dynamic changes of acoustic pressure in the case of a stationary acoustic wave. This method uses optical feedback interferometry sensing with a near-infrared laser diode. The stationary acoustic wave is generated using two piezoelectric transducers of 40 kHz facing each other, dynamic changes in acoustic pressure are measured in a 100 mm x 100 mm acoustic propagation field whose refractive index is variable along the optical path of the laser from the laser diode to a distant mirror and vice-versa. The image system records an image of 100 x 100 pixels of the acoustic pressure variation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.