This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Automatic pitch decomposition for improved process window when printing dense features at k1eff<0.20
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Optical imaging in microlithography involves the physical formation of sub-micron structures within a photosensitive material for subsequent transfer into underlying films or substrates. Since the optical exposure systems used in lithography are some of the most advanced and complex optical instruments ever built, they involve ever more complex illuminator designs, nearly aberration free lenses, and hyper numerical apertures approaching unity and beyond.
Fortunately, the lithography community has risen to the challenge by devising many inventive methods to characterize and optimize exposure systems. Moreover, the advanced use of simulation not only ties together characterization data to form a cohesive picture of exposure system capability, but it allows for a shorter time to development if the appropriate model calibration is successfully used. The imaging theory and models that are subsequently used in this industry, either in commercial or in-house simulation packages, have successively evolved in complexity with each new generation of the optics, but can seem very complicated to the uninitiated.
This course will cover and explain the fundamentals behind imaging and optics in state-of-the-art microlithography. The basic optical concepts will be explained, including hyper-NA, polarization, and immersion optics. A systematic, step-by-step construction of partial coherent imaging models will be developed for vector and scalar assumptions. The description is enhanced by simple application examples to allow these models to be easily understood. Additional techniques are described that reduce the complexity of these models to allow for the formation of exposure tool performance prediction.
A basic 'hands on' lecture is presented, in which students are given various optical components, including a source, lenses, gratings, etc., that are used to build a personal optical bench. Basic concepts of imaging, resolution, coherence factor, on-axis illumination, off-axis illumination, binary masks, phase-shift masks, etc., are examined by the students operating in small groups under the direction of the instructor. These concepts are related to real lithographic systems using basic principles and simulation. This course is intended to provide a foundation for the follow-on course, "Imaging and Optics Fundamentals in Microlithography" (SC706).
A basic 'hands on' lecture is presented, in which students are given various optical components, including a source, lenses, gratings, etc., that are used to build a personal optical bench. Basic concepts of imaging, resolution, coherence factor, on-axis illumination, off-axis illumination, binary masks, phase-shift masks, etc., are examined by the students operating in small groups under the direction of the instructor. These concepts are related to real lithographic systems using basic principles and simulation. This course is intended to provide a foundation for the follow-on course, "Imaging and Optics Fundamentals in Microlithography" (SC706).
View contact details
No SPIE Account? Create one