This paper investigates the tunable characteristics of various photonic crystal structures infiltrated with nematic liquid crystals. A triangular lattice of air cylinders drilled into silicon provides the photonic crystal structure and the nematic material is inserted either in all or in properly selected air voids in order to create one-dimensional cavities or directional couplers. We have shown in previous studies that the spectral properties of such geometries can be tuned by means of applying appropriate static electric fields, which eventually determine the orientation of the liquid crystal molecules inside the cylindrical cavities. The essential aspect of the present study is to consider various profiles for the nematic director, which are associated with different molecular anchoring conditions at the confining surfaces, as well as electric fields of various strengths and orientation. In particular, we examine the cases of homeotropic or tangential surface anchoring orientation in the strong or weak anchoring limit, and more specifically focus on determining the impact of the transition from strong to weak anchoring, both on the operation of each structure and the associated range of tuning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.