We summarize results of several successful dense plasma diagnostics experiments realized combining two different kinds of table-top soft x-ray lasers with an amplitude division interferometer based on diffraction grating beam splitters. In the first set of experiments this robust high throughput diffraction grating interferometer (DGI) was used with a 46.9 nm portable capillary discharge laser to study the dynamics of line focus and point focus laser-created plasmas. The measured electron density profiles, which differ significantly from those expected from a classical expansion, unveil important twodimensional effects of the dynamics of these plasmas. A second DGI customized to operate in combination with a 14.7 nm Ni-like Pd transient gain laser was used to perform interferometry of line focus laser-created plasmas with picosecond time resolution. These measurements provide valuable new benchmarks for complex hydrodynamic codes and help bring new understanding of the dynamics of dense plasmas. The instrumentation and methodology we describe is scalable to significantly shorter wavelengths, and constitutes a promising scheme for extending interferometry to the study of very dense
plasmas such as those investigated for inertial confinment fusion.
We present results from soft x-ray laser interferometry/shadowgraphy of current-driven thin wire plasmas using a capillary discharge pumped 46.9 nm laser and a diffraction grating interferometer. We have obtained series of soft x-ray images of exploding Al wires 15 μm or 25 μm in diameter. The high photo-ionization cross sections of atoms and low charge ions at this wavelength allow the soft x-ray laser probe to detect the early stages of formation of a coronal plasma surrounding the wire core. Wires of 25 μm diameter excited by current pulses with a 78 A/ns increase rate are observed to expand uniformly. However, an increase in the rate of energy deposited per unit of mass is observed to give rise to significant instabilities. The simultaneous analysis of the fringe shift and soft x-ray absorption data suggests the coronal plasma contains a significant concentration of low Z impurities. The results illustrate that table-top soft x-ray lasers are a powerful new tool for the diagnostics of dense plasmas.
This paper gives an overview of recent soft x-ray laser research at Colorado State University. Progress related to capillary discharge source development includes the observation of emission from the 13.2-nm laser line of Nickel-like Cd in a plasma column generated by a high power capillary discharge. This result suggests it might be possible to extend capillary discharge lasers to significantly shorter wavelengths. In another approach to the generation of coherent soft x-ray radiation we analyzed the possibility of amplifying high order harmonic pulses in a discharge-pumped amplifier. The study of the already well- characterized 46.9-nm Ne-like Ar laser was extended with new spatial coherence and laser wavefront measurements, in work conducted in collaboration with U. California Berkeley and U. of Paris-Sud groups. In the field of applications, we have extended our previous results of plasma interferometry with a tabletop laser to plasma densities up to 0.9 x 1021 cm-3. Sequences of soft x-ray laser interferograms of plasmas generated by a Nd-YAG laser at intensities between 1 x 1011 W cm-2 and 7 x 1012 W cm-2 show the development and evolution of a concave electron density profile. The detailed mapping of this phenomenon with soft x-ray interferometry exemplifies the usefulness of compact soft x-ray lasers in increasing the understanding of high density plasmas.
We report an extension of previous tabletop soft x-ray laser interferometry work to plasma densities approaching the critical density. The evolution of line-focus and spot-focus plasmas created with Nd-YAG laser intensities of 0.1 and 7.0 TW/cm2 respectively were studied utilizing a 46.9-nm capillary discharge laser with a diffraction grating interferometer. In the latter case, the electron density was mapped to values up to 0.9x1021 cm-3 (90% of the critical density for the lambda equals 1.06 micrometers pump laser). The interferograms show the development of concave electron density profiles with a minimum on axis and pronounced side lobes. Hydrodynamic model simulations show that the concave profile is the result of the hydrodynamic and radiation effects that enlarge the ablated target area. The measurements exemplify how soft x-ray lasers can be used to probe high density plasmas for the validation of hydrodynamic codes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.