Recently emerged metasurfaces, the two-dimensional (2D) counterpart of three dimensional (3D) metamaterials, gained significant attention in optics and photonics due to their less challenging fabrication requirements (compared to 3D metamaterials) and unique capabilities of wavefront manipulation by introducing abrupt phase shift. Realization of multiple functionalities in a single metasurface, is an intriguing perception to achieve further miniaturization and cost effectiveness. In this paper, we propose a polarization insensitive, highly efficient metasurfaces for the visible spectrum. For the design wavelength of 633nm, negligible absorption coefficient (k) and adequately large refractive index (n) of proposed hydrogenated amorphous silicon (a-Si:H) leads to considerably efficient and cost-effective solution towards metasurfaces design. Inherent property of cylindrical pillar to be polarization insensitive is exploited and 400 nm thick cylindrical nano–waveguide is opted as building block to construct the metasurface. A novel design strategy of achieving multiple functionalities from a single metasurface is proposed, where a combined effect of lensing and optical vortices with different topological charges at different focal planes is demonstrated for the proof of concept. Such unique design strategy of integrating multiple phases into a single device provides an innovative way of miniaturizing the optical devices and systems exhibiting versatile functionalities for on–chip applications.
Miniaturized devices with multiple functionalities are exceedingly required in integrated optical systems. Flat nanostructures, named metasurfaces, provide fascinating boulevard for complex structuring and manipulation of light such as optical vortex generation, lensing, imaging, harmonic generation etc. at micron scale. Since, the performance of metal-based plasmonic metasurfaces is significantly limited by their optical absorption and losses, lossless dielectric materials (in the operational spectrum) provide decent alternative to attain higher efficiency. Here, a novel, polarization insensitive and highly efficient method for light structuring is demonstrated based on amorphous silicon (with subwavelength thickness of 400 nm) at an operational wavelength of 633 nm. The proposed phase gradient metasurface is based on circular cylindrical nanopillars of amorphous silicon exhibits two optical properties, the lensing and orbital angular momentum generation. The cylindrical nature of the pillar plays a pivotal role to make the overall structure as polarization insensitive. The proposed innovative methodology will provide an interesting road towards the development and realization of multi-functional ultrathin nanodevices which will find numerous applications in integrated photonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.