The utilization of lasers in dentistry expands greatly in recent years. For instance, fs-lasers are effective for both drilling and caries prevention, while cw-lasers are useful for adhesive hardening. A cutting-edge application of lasers in dentistry is the debonding of veneers. While there are pre-existing tools for this purpose, there is still potential for improvement. Initial efforts to investigate laser assisted debonding mechanisms with measurements of the optical and mechanical properties of teeth and prosthetic ceramics are presented. Preliminary tests conducted with a laser system used for debonding that is commercially available showed differences in the output power set at the systems console to that at specified distances from the handpiece. Furthermore, the optical properties of the samples (human teeth and ceramics) were characterised. The optical properties of the ceramics should closely resemble those of teeth in terms of look and feel, but they also influence the laser assisted debonding technique and thus must be taken into account. In addition first attempts were performed to investigate the mechanical properties of the samples by means of pump-probe-elastography under a microscope. By analyzing the sample surface up to 20 ns after a fs-laser pulse impact, pressure and shock waves could be detected, which can be utilized to determine the elastic constants of specific materials. Together such investigations are needed to shape the basis for a purely optical approach of debonding of veneers utilizing acoustic waves.
Pump-probe microscopy can be utilized to image laser-induced acoustic waves, which carry information about elastic properties. This paper shows how the pulse number and energy affects the imaging quality of waves in water and glass.
In recent years pump-probe microscopy has been used in several studies to investigate laser-material interaction processes. Thereby, acoustic waves could be imaged that were released into the vicinity of the irradiated spot. Since these waves carry information about the elastic properties of the material, the question arose how pump-probe microscopy could be utilized for elastography of biological materials. Therefore, the influence of the pump-pulse energy on the radius and thus on the speed of acoustic waves in solid and fluid media was investigated in this study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.