The James Webb Space Telescope Integrated Science Instrument Module utilizes two fixtures to
align the Optical Telescope Element Simulator (OSIM) to the coordinate systems established on the
ISIM and the ISIM Test Platform (ITP). These fixtures contain targets which are visible to the OSIM
Alignment Diagnostics Module (ADM). Requirements on these fixtures must be met under ambient and
cryogenic conditions. This paper discusses the cryogenic metrology involving Laser Radar
measurements through a chamber window that will be used to link photogrammetry target measurements
used during ISIM structure cryogenic verification and the ADM targets, including evaluation of
distortion introduced from the window.
The WIYN High Resolution Infrared Camera (WHIRC) has been a general-use instrument at the WIYN telescope on
Kitt Peak since 2008. WHIRC is a near-infrared (0.8 - 2.5 μm) camera with a filter complement of J, H, Ks broadband
and 10 narrowband filters, utilizing a 2048 × 2048 HgCdTe array from Raytheon's VIRGO line, developed for the
VISTA project. The compact on-axis refractive optical design makes WHIRC the smallest near-IR camera with this
capability. WHIRC is installed on the WIYN Tip-Tilt Module (WTTM) port and can achieve near diffraction-limited
imaging with a FWHM of ~0.25 arcsec at Ks with active WTTM correction and routinely delivers ~0.6 arcsec FWHM
images without WTTM correction. During its first year of general use operation at WIYN, WHIRC has been used for
high definition near-infrared imaging studies of a wide range of astronomical phenomena including star formation
regions, stellar populations and interstellar medium in nearby galaxies, high-z galaxies and transient phenomena. We
discuss performance and data reduction issues such as distortion, pupil ghost, and fringe removal and the development of
new tools for the observing community such as an exposure time calculator and data reduction pipeline.
We present the design overview and on-telescope performance of the WIYN High Resolution Infrared Camera
(WHIRC). As a dedicated near-infrared (0.8-2.5 μm) camera on the WIYN Tip-Tilt Module (WTTM), WHIRC will
provide near diffraction-limited imaging with a typical FWHM of ~0.25". WHIRC uses a 2048 x 2048 HgCdTe array
from Raytheon's VIRGO line, which is a spinoff from the VISTA project. The WHIRC filter complement includes J, H
KS, and 10 narrowband filters. WHIRC's compact design makes it the smallest near-IR camera with this capability. We
determine a gain of 3.8 electrons ADU-1 via a photon transfer analysis and a readout noise of ~27 electrons. A measured
dark current of 0.23 electrons s-1 indicates that the cryostat is extremely light tight. A plate scale of 0.098" pixel-1 results
in a field of view (FOV) of ~3' x 3', which is a compromise between the highest angular resolution achievable and the
largest FOV correctable by WTTM. Measured throughput values (~0.33 in H-band) are consistent with those predicted
for WHIRC based on an elemental analysis. WHIRC was delivered to WIYN in July 2007 and was opened for shared
risk use in Spring 2008. WHIRC will be a facility instrument at the WIYN telescope enabling high definition near-infrared
imaging studies of a wide range of astronomical phenomena including star formation regions, proto-planetary
disks, stellar populations and interstellar medium in nearby galaxies, and supernova and gamma-ray burst searches.
The FourStar infrared camera is a 1.0-2.5 μm (JHKs) near infrared camera for the Magellan Baade
6.5m telescope at Las Campanas Observatory (Chile). It is being built by Carnegie Observatories and
the Instrument Development Group and is scheduled for completion in 2009. The instrument uses four
Teledyne HAWAII-2RG arrays that produce a 10.9' × 10.9' field of view. The outstanding seeing at the
Las Campanas site coupled with FourStar's high sensitivity and large field of view will enable many
new survey and targeted science programs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.