Based on the analysis method of the light propagation in isotropic absorption media, the vector propagation constant is introduced and the light propagation in the biaxial absorption crystal is analyzed. The representations of some important physical parameters are derived, which was used to describe the crystal property and light propagation property, such as angle of refraction, refractive index, absorption coefficient. The corresponding results of transparent crystal can be deduced from these representations. When the crystal is absorptive, the reflection and transmission coefficients derived from the vector propagation constant method are in concordance with the results of complex refractive index method. So these two methods are uniform in some aspects, but the method of vector propagation constant is more convenient and available.
Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.
Ulcerative colitis (UC) is an inflammatory destructive disease of the large intestine occurred usually in the rectum and lower part of the colon as well as the entire colon. In this paper, the influence of IL-1α and IL-4 on the experimental ulcerative colitis by light emitting diode ( LED ) (λ: 632.8nm; power: 4.0mw) applied to colon directly were studied. Making 30 rats into 3 groups: LED curative group, model group, normal control group. There were 10 rats of each group. We used glacial acetic acid (5%) and trinitro-benzene-sulfonic acid (TNBS) (1%) intra-anally to replicate the rat model of ulcerative colitis. After a week treatment with administrating LED rectal irradiation to curative group, 30mm each time, once per day, the histopathological studies in colonic tissue were performed, and the expression and distribution of IL-lα and IL-4 in colonic tissues were investigated by immunohistochemical staining. The extent of the Colonic tissue injury in LED curative group was not as significant as that in the model group. Compared with model group, the content of MDA in LED curative group was reductived and the activity of SOD was increased significantly, and the expression and distribution of IL-lα in LED curative group was depressed significantly, however the expression and distribution of IL-4 in LED curative group was increased obviously. This results show that the LED rectal irradiation can protect colonic mucosa from the experimental ulcerative colitis in rats, and suggest that the effects may be related to the photobiomodulation and immunomodulation of LED.
We establish, for the first time, a simulation model for dealing with the second-harmonic signals under a microscope through a tissue-like turbid medium, based on the Monte Carlo method. With this model, the angle-resolved distribution and the signal level of second-harmonic light through a slab of the turbid medium are demonstrated and the effects of the thickness (d) of the turbid medium, the numerical aperture (NA) of the objective as well as the size () of the scatterers forming the turbid medium are explored. Simulation results reveal that the use of a small objective NA results in a narrow angle distribution but strong second-harmonic signals. A turbid medium consisting of large scattering particles has a strong influence on the angle distribution and the signal level , which results in a low penetration limit for second-harmonic signals made up of ballistic photons. It is approximately 30 µm in our situation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.