The first fully integrated SOI device using 42nm-pitch directed self-assembly (DSA) process for fin formation has been demonstrated in a 300mm pilot line environment. Two major issues were observed and resolved in the fin formation process. The cause of the issues and process optimization are discussed. The DSA device shows comparable yield with slight short channel degradation which is a result of a large fin CD when compared to the devices made by baseline process. LER/LWR analysis through the DSA process implied that the 42nm-pitch DSA process may not have reached the thermodynamic equilibrium. Here, we also show preliminary results from using scatterometry to detect DSA defects before removing one of the blocks in BCP.
The patterning capability of the directed self-assembly (DSA) of a 42nm-pitch block copolymer on
an 84nm-pitch guiding pattern was investigated in a 300mm pilot line environment. The chemoepitaxy
guiding pattern was created by the IBM Almaden approach using brush materials in
combination with an optional chemical slimming of the resist lines. Critical dimension (CD)
uniformity, line-edge/line-width roughness (LER/LWR), and lithographic process window (PW) of
the DSA process were characterized. CD rectification and LWR reduction were observed. The
chemical slimming process was found to be effective in reducing pattern collapse, hence, slightly
improving the DSA PW under over-dose conditions. However, the overall PW was found to be
smaller than without using the slimming, due to a new failure mode at under-dose region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.