The purpose of conventional techniques for multiplexing fiber Bragg gratings (FBGs) is that each FBG has its own wavelength or unique intensity of reflected light. The cost pf per channel is at least of a few hundred dollars. All these limit the FBG points increasing at fiber measuring system. Based on improved Fast-ICA and self-adapting, this paper focuses on the separation of two same wavelength FBGs mixing model caused by temperature and vibration. Simulation experiment is carried out based on the initial wavelengths of two FBGs are both 1550.515nm and the temperature fluctuation range is 0-0.5°C and amplitude and frequency of exterior vibration are 0.01nm and 10Hz. Simulation data show that the separation steps consume 1.3884s and mean and mean square of absolute errors between the original and separated signals are 8.11·10-9, -5.83·10-12, and 2.57·10-6, 2.42·10-9, correspondingly. Therefore, through using this separation method, two same wavelength FBGs could achieve simultaneously measurement of temperature and vibration at one channel. This could double measuring points of fiber detection system, effectively.
Optical fiber grating (FBG) has been widely used in the measurement of parameters such as temperature and strain. However, FBG is too slim to broken, whose outside protective layer tends to shedding easily, and it is also hard to change the temperature and strain sensitivity. In order to overcome the above disadvantages and to further expand the application range of FBG, this paper improves the technology of fiber grating metal film plating process firstly. It adopts a compositive method including chemical plating and electroplating to gild FBG, copper FBG and galvanize FBG, which all get good metal coating. Then, the temperature and strain sensing properties of metalized FBG is studied in detail. Multiple metal coating FBGs were put in high-low temperature test-box together, and then the test-box worked continuously at the temperature range of 0°C~95°C. After several experiments, it concludes that metal plating enhances the temperature sensitivity of fiber grating, and the one with galvanization has the highest temperature sensitivity of 0.0235. At last, FBGs with various cladding were pasted on carbon fiber cantilever beam respectively and the pressure on the top of the cantilever increased gradually. The experimental results show that wavelength of fiber grating shift toward the long wavelength with the increase of the pressure, and the one with galvanization has the maximum strain sensitivity which has minimal impact on fiber properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.