Peripheral Artery Diseases (PAD) are caused by the occlusions of arteries in the peripheral locations of the circulatory system. The severity of PAD is usually assessed using the Ankle Brachial Index (ABI) and the Ultrasound Doppler. Non-contact Photoplethysmography (PPG) imaging is a recent emerging technology capable of monitoring skin perfusion. Using an off-the-shelf camera and a light source, is possible to remotely detect the dynamic changes in blood volume in the skin and derive a map correlated to the blood perfusion. The aim of this study is the evaluation of a PPG imaging system (iPPG) for the assessment of Peripheral Arterial Diseases. Reduced blood flow is simulated on 21 volunteers by increasing the pressure in a pressure cuff. For each volunteer, measurements with iPPG, ultrasound, Laser Speckle Contrast Analysis (LASCA) and ABI were acquired. Our experiments show that iPPG can detect reduced perfusion levels, and correlates well with the other measurement systems.
Safe and accurate placement of spinal screws remains a critical step during open and minimally invasive spinal fusion surgery. We investigated the application of diffuse reflectance spectroscopy (DRS) for real-time instrument guidance during a spinal screw placement procedure. A custom-built screw probe with integrated optical fibers was inserted into a vertebra under image guidance in an ex vivo human setting. We found that fat content derived from the spectra gradually changed as the probe approached the cortical bone boundary. The results indicate that DRS integrated into surgical instruments has the potential to improve the safety and accuracy of spinal screw placement procedures.
Safe and accurate placement of screws remains a critical issue in open and minimally invasive spine surgery. We propose to use diffuse reflectance (DR) spectroscopy as a sensing technology at the tip of a surgical instrument to ensure a safe path of the instrument through the cancellous bone of the vertebrae. This approach could potentially reduce the rate of cortical bone breaches, thereby resulting in fewer neural and vascular injuries during spinal fusion surgery. In our study, DR spectra in the wavelength ranges of 400 to 1600 nm were acquired from cancellous and cortical bone from three human cadavers. First, it was investigated whether these spectra can be used to distinguish between the two bone types based on fat, water, and blood content along with photon scattering. Subsequently, the penetration of the bone by an optical probe was simulated using the Monte-Carlo (MC) method, to study if the changes in fat content along the probe path would still enable distinction between the bone types. Finally, the simulation findings were validated via an experimental insertion of an optical screw probe into the vertebra aided by x-ray image guidance. The DR spectra indicate that the amount of fat, blood, and photon scattering is significantly higher in cancellous bone than in cortical bone (p < 0.01), which allows distinction between the bone types. The MC simulations showed a change in fat content more than 1 mm before the optical probe came in contact with the cortical bone. The experimental insertion of the optical screw probe gave similar results. This study shows that spectral tissue sensing, based on DR spectroscopy at the instrument tip, is a promising technology to identify the transition zone from cancellous to cortical vertebral bone. The technology therefore has the potential to improve the safety and accuracy of spinal screw placement procedures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.