Today's situation with increasingly shorter time-to-market limits and growing variant spectra calls for advanced methods in the manufacturing domain. A big potential for gaining faster and better manufacturing results lies in the application of offline programming, especially if processing small lot sizes. Offline programming offers as main advantage a notable reduction of deadlock times of manufacturing systems. Applying this technology there is no time consumptive teach-in on the robots necessary. A technology module based on CAD/CAM technique--mainly for 3D welding applications--is described which permits to carry out offline path and process planning including simulation and visualization of the processing task.
An approach to improve the quality of offline programming for laser beam welding is described. A CAD-dataset is combined with technological information using a feature model. A feature consists of the basic geometry, process parameters, a set of strategies in which way it can be processed, and rules to select the optimum strategy depending on the boundary conditions. The resulting welding task is represented by a list of features from which an NC-dataset is generated, containing all process information. The aim of the development is to design a feature based technology module which is integrated into a flexible, fault tolerant and process near planning tool.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.