VROOMM is an optical (360nm - 930 nm) high-resolution échelle spectrograph currently in its design phase for the 1.6-meter telescope of the Observatoire du Mont-Mégantic (OMM) in Québec, Canada. Specifically designed for precision radial velocity (RV) measurements of relatively faint stars, the instrument features a 4K photon-counting EMCCD, octagonal fibers, and a double scrambler, all housed in a thermally stabilized vacuum cryostat. Designed for a resolution exceeding 80 000, the spectrograph aims to provide RV measurements with precision tailored for specific cases. The first scenario involves using the EMCCD like a normal CCD without electron amplification, enabling follow-up observations of terrestrial planets, super-Earths, and mini-Neptunes orbiting relatively bright M dwarfs. The second case employs photon counting, utilizing the electron-multiplying mode of the EMCCD to achieve 100−200 m/s velocimetry through cross-correlation of extremely low signal-to-noise ratio data. This innovative approach opens up observations of stars as faint as rsdss=19-20, an unexplored realm in RV studies. The main science niche for this mode is the confirmation of brown dwarfs orbiting cool stars and stellar dynamics within open clusters and young associations. Typically observed at low resolution, these targets face challenges in achieving RV precision better than a few km/s. VROOMM’s photon counting capability presents a novel solution for obtaining high-precision radial velocities in this challenging regime. We detail the unique features and capabilities of each operation mode, emphasizing the novel contributions of VROOMM in advancing precision RV measurements for a diverse range of exoplanet systems.
Large-format infrared arrays are enablers for a variety of astronomical applications, from wide-field imaging to very high-resolution spectroscopy over a wide range of wavelength. We present the optimization of the science-grade H4RG array used in the SPIRou high-resolution spectrograph designed for high-precision velocity measurements. In SPIRou nominal science operation, the array is used in a relatively low flux regime, well below the full-well of the arrays and, for some applications, the readout noise is a major contributor to the overall signal-to-noise budget. We describe the detector fine-tuning process as well as the derived properties and their impact on performances. We identify persistence as potentially problematic under certain circumstances for infrared m/s velocimetry.
The Near Infrared Imager and Slitless Spectrograph (NIRISS) Optical Simulator (NOS) is a
laboratory simulation of the single-object slitless spectroscopy and aperture masking interferometry modes of the
NIRISS instrument onboard the James Webb Space Telescope (JWST). A transiting exoplanet can be simulated
by periodically eclipsing a small portion (1% - 10ppm) of a super continuum laser source (0.4 μm - 2.4 μm) with
a dichloromethane filled cell. Dichloromethane exhibits multiple absorption features in the near infrared domain
hence the net effect is analogous to the atmospheric absorption features of an exoplanet transiting in front of its
host star. The NOS uses an HAWAII-2RG and an ASIC controller cooled to cryogenic temperatures. A separate
photometric beacon provides a flux reference to monitor laser variations. The telescope jitter can be simulated
using a high-resolution motorized pinhole placed along the optical path. Laboratory transiting spectroscopy data
produced by the NOS will be used to refine analysis methods, characterize the noise due to the jitter, characterize
the noise floor and to develop better observation strategies. We report in this paper the first exoplanet transit
event simulated by the NOS. The performance is currently limited by relatively high thermal background in the
system and high frequency temporal variations of the continuum source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.