We report on the first non-contact, non-destructive performance measurements of embedded Ring Oscillators. Measurements are made on inside the die active area as early as Metal 1. A 90nm logic CMOS technology was used for this work. We have measured residual across-field performance process noise, and variation separate from and of opposite sense to wafer uniformity. This effect cannot be extrapolated from scribe measurements.
The electromigration behavior of Ti-AlCu-Ti metallurgy is presented in this work. For single- level structures in the absence of tungsten (W) stud interconnections, a greater-than-100X lifetime improvement over AlCu is measured. The metal linewidth strongly affects the median time to failure, T50, and standard deviation, sigma ((sigma) ), of the lognormal distribution. For two-level W stud chains, a 50X degradation in lifetime as compared to single-level structures is measured. The lifetime of these W stud chains depends on the Ti- AlCu-Ti current density rather than the stud current density. The 'reservoir effect', in which the electromigration lifetime of Ti-AlCu-Ti stripes depends strongly on W studs near the electron source end of the stripes, is a direct result of W acting as a diffusion barrier. The lifetime of W stud chains with Ti-AlCu-Ti metallurgy is longer for 2.0% copper than for 0.5% copper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.