Future planetary missions will require advanced, smart, low resource payloads (P/Ls) and satellites1,2 to enable the exploration of the solar system in a more frequent, timely and multi-mission manner with reasonable cost. The concept of highly integrated payload architectures was introduced during the re-assessment of the payload of the BepiColombo Mercury Planetary Orbiter3. Considerable mass and power savings were achieved throughout the instrumentation by better definition of the instruments design, higher integration and identification of resource drivers4. Higher integration and associated synergy effects permit optimisation of the payload performance at minimum resource requirements while meeting demanding science requirements. This promising concept has been applied to a set of hypothetical Planetary Technical Reference Studies11 (PTRS) on missions to Venus5, Jupiter/Europa6, Deimos7, Mars8 and the investigation of the Interstellar Heliopause9. The needs on future instrumentation were investigated for these mission concepts and potential instruments were proposed10. A demonstration programme is now proposed in form of an elegant breadboard that consists of a photon counting laser altimeter, a stereoscopic high resolution camera, and a broadband radiometric mapping spectrometer. The aim of the activity is to demonstrate to feasibility of such a miniaturised, low resource and highly integrated payload based on innovative instrument designs. The activity shall thereby provide a clear detailed definition of the technical and managerial aspects for implementation into potential future planetary space science missions.
Future planetary missions will require advanced, smart, low resource payloads and satellites to enable the exploration of our solar system in a more frequent, timely and multi-mission manner. A viable route towards low resource science instrumentation is the concept of Highly Integrated Payload Suites (HIPS), which was introduced during the re-assessment of the payload of the BepiColombo (BC) Mercury Planetary Orbiter (MPO). Considerable mass and power savings were demonstrated throughout the instrumentation by improved definition of the instrument design, a higher level of integration, and identification of resource drivers. The higher integration and associated synergy effects permitted optimisation of the payload performance at minimum investment while still meeting the demanding science requirements. For the specific example of the BepiColombo MPO, the mass reduction by designing the instruments towards a Highly Integrated Payload Suite was found to be about 60%. This has endorsed the acceptance of a number of additional instruments as core payload of the BC MPO thereby enhancing the scientific return. This promising strategic approach and concept is now applied to a set of planetary mission studies for future exploration of the solar system. Innovative technologies, miniaturised electronics and advanced remote sensing technologies are the baseline for a generic approach to payload integration, which is here investigated also in the context of largely differing mission requirements. A review of the approach and the implications to the generic concept as found from the applications to the mission studies are presented.
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument is scheduled for launch on the NASA AURA satellite in January 2004; it is a joint project between the UK and USA. HIRDLS is a mid-infrared limb emission sounder which will measure the concentration of trace species and aerosol, and temperature and pressure variations in the Earth's atmosphere between about 8 and 100 km altitude on a finer spatial scale than has been achieved before. This will depend upon both a high quality of instrument build, and very precise pre-launch calibration. Proto Flight Model calibration was performed in a purpose-built laboratory at Oxford University during an 13-week period in 2002. The tests were made in vacuum under cryogenic conditions close to the space environment. The measurements were divided into spectral, spatial and radiometric, with the HIRDLS pointing capability being used to control which item of test equipment was viewed. A large degree of automation was achieved, and this combined with 24-hour/7-day working enabled a large quantity of information to be obtained.
The techniques used to calibrate the field of view of the High
Resolution Dynamics Limb Sounder (HIRDLS) instrument and the results
of the calibration are presented. HIRDLS will be flown on the NASA EOS
Aura platform. Both in-field and out-of-field calibrations were
performed. The calibration results are compared to the requirements
and, in the case of out-of-field, mechanisms explaining the results
are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.