Reliably detecting or tracking 3D features is challenging. It often requires preprocessing and filtering stages, along with fine-tuned heuristics for reliable detection. Alternatively, artificial intelligence-based strategies have recently been proposed; however, these typically require many manually labeled images for training. We introduce a method for 3D feature detection by using a convolutional neural network and a single 3D image obtained by fringe projection profilometry. We cast the problem of 3D feature detection as an unsupervised detection problem. Hence, the goal is to use a neural network that learns to detect specific features in 3D images using a single unlabeled image. Therefore, we implemented a deep-learning method that exploits inherent symmetries to detect objects with few training data and without ground truth. Subsequently, using a pyramid methodology of rescaling each image to be processed, we achieved feature detections of different sizes. Finally, we unified the detections using a non-maximum suppression algorithm. Preliminary results show that the method provides reliable detection under different scenarios with a more flexible training procedure than other competing methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.