We are planning to launch a 50kg-class satellite named INSPIRE, equipped with a small, high-performance Hybrid Compton Camera (HCC) for MeV gamma-ray astronomy.Since the launch of the COMPTEL satellite in 1991, there have been limited observations in the MeV gamma-ray band. However, this energy range is crucial for studying nucleosynthesis processes. INSPIRE aims to conduct a wide-area survey of nuclear gamma rays from the galactic plane and includes gamma-ray observations of solar flares as one of its objectives. Equipped with a hybrid Compton camera (HCC) system, INSPIRE can perform simultaneous X-ray and gamma-ray imaging. This is achieved by integrating the features of both Compton and pinhole cameras within a single detector system. The system includes two sensor layers of large-area Silicon Photomultiplier (SiPM) arrays, optically coupled with GAGG scintillators. This configuration enables simultaneous imaging of gamma rays from 30 to 200 keV in pinhole mode and from 200 to 3000 keV in Compton mode. Its intrinsic efficiency and angular resolution are comparable to those of COMPTEL.The INSPIRE satellite is being developed as the successor to PETREL, which is currently being prepared for launch, with a planned launch in 2027.
Understanding and reducing in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard x-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) onboard the Hitomi satellite provide useful information on the background components due to its multilayer configuration with different atomic numbers: the HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of cadmium telluride (CdTe) (Z = 48, 52) detector surrounded by well-type Bi4Ge3O12 active shields. Based on the observational data, the backgrounds of the top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby quantitatively verifying the above hypothesis. In addition, we suggest the inclusion of an electron shield to reduce the background.
Hitomi (ASTRO-H) was the sixth Japanese x-ray satellite that carried instruments with exquisite energy resolution of <7 eV and broad energy coverage of 0.3 to 600 keV. The Soft Gamma-ray Detector (SGD) was the Hitomi instrument that observed the highest energy band (60 to 600 keV). The SGD design achieves a low background level by combining active shields and Compton cameras where Compton kinematics is utilized to reject backgrounds coming from outside of the field of view. A compact and highly efficient Compton camera is realized using a combination of silicon and cadmium telluride semiconductor sensors with a good energy resolution. Compton kinematics also carries information for gamma-ray polarization, making the SGD an excellent polarimeter. Following several years of development, the satellite was successfully launched on February 17, 2016. After proper functionality of the SGD components were verified, the nominal observation mode was initiated on March 24, 2016. The SGD observed the Crab Nebula for approximately two hours before the spacecraft ceased to function on March 26, 2016. We present concepts of the SGD design followed by detailed description of the instrument and its performance measured on ground and in orbit.
The hard x-ray imaging spectroscopy system of “Hitomi” x-ray observatory is composed of two sets of hard x-ray imagers (HXI) coupled with hard x-ray telescopes (HXT). With a 12-m focal length, the system provides fine (1 ′ . 7 half-power diameter) imaging spectroscopy covering about 5 to 80 keV. The HXI sensor consists of a camera, which is composed of four layers of Si and one layer of CdTe semiconductor imagers, and an active shield composed of nine Bi4Ge3O12 scintillators to provide low background. The two HXIs started observation on March 8 and 14, 2016 and were operational until 26 March. Using a Crab observation, 5 to 80 keV energy coverage and good detection efficiency were confirmed. The detector background level of 1 to 3 × 10 − 4 counts s − 1 keV − 1 cm − 2 (in detector geometrical area) at 5 to 80 keV was achieved, by cutting the high-background time-intervals, adopting sophisticated energy-dependent imager layer selection, and baffling of the cosmic x-ray background and active-shielding. This level is among the lowest of detectors working in this energy band. By comparing the effective area and the background, it was shown that the HXI had a sensitivity that is same to that of NuSTAR for point sources and 3 to 4 times better for largely extended diffuse sources.
The Hard X-ray Imager (HXI) onboard Hitomi (ASTRO-H) is an imaging spectrometer covering hard x-ray energies of 5 to 80 keV. Combined with the Hard X-ray Telescope, it enables imaging spectroscopy with an angular resolution of 1′.7 half-power diameter, in a field of view of 9′ × 9′. The main imager is composed of four layers of Si detectors and one layer of CdTe detector, stacked to cover a wide energy band up to 80 keV, surrounded by an active shield made of Bi4Ge3O12 scintillator to reduce the background. The HXI started observations 12 days before the Hitomi loss and successfully obtained data from G21.5–0.9, Crab, and blank sky. Utilizing these data, we calibrate the detector response and study properties of in-orbit background. The observed Crab spectra agree well with a powerlaw model convolved with the detector response, within 5% accuracy. We find that albedo electrons in specified orbit strongly affect the background of the Si top layer and establish a screening method to reduce it. The background level over the full field of view after all the processing and screening is as low as the preflight requirement of 1 − 3 × 10−4 counts s−1 cm−2 keV−1.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
Hitomi X-ray observatory launched in 17 February 2016 had a hard X-ray imaging spectroscopy system made of two hard X-ray imagers (HXIs) coupled with two hard X-ray telescopes (HXTs). With 12 m focal length, they provide fine (2' half-power diameter; HPD) imaging spectroscopy at 5 to 80 keV. The HXI main imagers are made of 4 layers of Si and a CdTe semiconductor double-sided strip detectors, stacked to enhance detection efficiency as well as to enable photon interaction-depth sensing. Active shield made of 9 BGO scintillators surrounds the imager to provide with low background. Following the deployment of the Extensible Optical Bench (EOB) on 28 February, the HXI was gradually turned on. Two imagers successfully started observation on 14 March, and was operational till the incident lead to Hitomo loss, on 26 March. All detector channels, 1280 ch of imager and 11 channel of active shields and others each, worked well and showed performance consistent with those seen on ground. From the first light observation of G21.5-0.9 and the following Crab observations, 5-80 keV energy coverage and good detection efficiency were confirmed. With blank sky observations, we checked our background level. In some geomagnetic region, strong background continuum, presumably caused by trapped electron with energy ~100 keV, is seen. But by cutting the high-background time-intervals, the background became significantly lower, typically with 1-3 x 10-4 counts s-1 keV-1 cm-2 (here cm2 is shown with detector geometrical area). Above 30 keV, line and continuum emission originating from activation of CdTe was significantly seen, though the level of 1-4 x 10-4 counts s-1 keV-1 cm-2 is still comparable to those seen in NuSTAR. By comparing the effective area and background rate, preliminary analysis shows that the HXI had a statistical sensitivity similar to NuSTAR for point sources, and more than twice better for largely extended sources.
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.
Y. Inome, G. Ambrosi, Y. Awane, H. Baba, A. Bamba, M. Barceló, U. Barres de Almeida, J. Barrio, O. Blanch Bigas, J. Boix, L. Brunetti, E. Carmona, E. Chabanne, M. Chikawa, N. Cho, P. Colin, J. Contreras, J. Cortina, F. Dazzi, A. Deangelis, G. Deleglise, C. Delgado, C. Díaz, F. Dubois, A. Fiasson, D. Fink, N. Fouque, L. Freixas, C. Fruck, A. Gadola, R. García, D. Gascón, N. Geffroy, N. Giglietto, F. Giordano, F. Grañena, S. Gunji, R. Hagiwara, N. Hamer, Y. Hanabata, T. Hassan, K. Hatanaka, T. Haubold, M. Hayashida, R. Hermel, D. Herranz, K. Hirotani, J. Hose, D. Hugh, S. Inoue, Y. Inoue, K. Ioka, C. Jablonski, M. Kagaya, H. Katagiri, J. Kataoka, H. Kellermann, T. Kishimoto, M. Knoetig, K. Kodani, K. Kohri, T. Kojima, Y. Konno, S. Koyama, H. Kubo, J. Kushida, G. Lamanna, T. Le Flour, M. López-Moya, R. López, E. Lorenz, P. Majumdar, A. Manalaysay, M. Mariotti, G. Martínez, M. Martinez, S. Masuda, S. Matsuoka, D. Mazin, U. Menzel, J. Miranda , R. Mirzoyan, I. Monteiro, A. Moralejo, K. Murase, S. Nagataki, T. Nagayoshi, D. Nakajima, T. Nakamori, K. Nishijima, K. Noda, A. Nozato, M. Ogino, Y. Ohira, M. Ohishi, H. Ohoka, A. Okumura, S. Ono, R. Orito, J. Panazol, D. Paneque, R. Paoletti, J. Paredes, G. Pauletta, S. Podkladkin, J. Prast, R. Rando, O. Reimann, M. Ribó, S. Rosier-Lees, K. Saito, T. Saito, Y. Saito, N. Sakaki, R. Sakonaka, A. Sanuy, M. Sawada, V. Scalzotto, S. Schultz, T. Schweizer, T. Shibata, S. Shu, J. Sieiro, V. Stamatescu, S. Steiner, U. Straumann, R. Sugawara, H. Tajima, H. Takami, M. Takahashi, S. Tanaka, M. Tanaka, L. Tejedor, Y. Terada, M. Teshima, Y. Tomono, T. Totani, T. Toyama, Y. Tsubone, Y. Tsuchiya, S. Tsujimoto, H. Ueno, K. Umehara, Y. Umetsu, A. Vollhardt, R. Wagner, H. Wetteskind, T. Yamamoto, R. Yamazaki, A. Yoshida, T. Yoshida, T. Yoshikoshi
The Large Size Telescopes, LSTs, located at the center of the Cherenkov Telescope Array, CTA, will be sensitive
for low energy gamma-rays. The camera on the LST focal plane is optimized to detect low energy events based
on a high photon detection efficiency and high speed electronics. Also the trigger system is designed to detect
low energy showers as much as possible. In addition, the camera is required to work stably without maintenance
in a few tens of years. In this contribution we present the design of the camera for the first LST and the status
of its development and production.
The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.
KEYWORDS: Signal processing, Sensors, Avalanche photodetectors, Logic, Cameras, Analog electronics, Signal detection, Digital filtering, Field programmable gate arrays, Gamma radiation
The hard X-ray imager (HXI) and soft gamma-ray detector (SGD) onboard Astro-H observe astronomical objects with high sensitivity in the hard X-ray (5−80 keV) and soft gamma-ray (40−600 keV) energy bands. To achieve this high sensitivity, background rejection is essential, and these detectors are surrounded by large and thick bismuth germinate scintillators as an active shield. We have developed adequate trigger logic for both the HXI and SGD to process signals from main detector and BGO shield simultaneously and then we optimized the trigger delay and width, with consideration of the trigger latch efficiency. The shield detector system performs well, even after it is assembled as the HXI sensor. The energy threshold maintains the same level as that observed during the prototype development phase, and the experimental room background level of the main detector is successfully reduced by our optimized trigger timing.
The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.
To measure the polarization of gamma-ray bursts in X-ray energy band, we have developed a 50 kg micro-satellite named "SUBAME". The satellite has a compact and high-sensitive hard X-ray polarimeter employing newly-developed shock resistant multi-anode photomultipliers and Si avalanche photodiodes. Thanks to the ultra low-noise detectors and signal processors, the polarimeter can cover a wide energy range of 30200 keV even at 25°C with a high modulation factor of 62 %. TSUBAME is in the phase of final functional tests waiting for shipping to Baikonur and will be launched into a sun-synchronous orbit at an altitude of 700 km in late 2014. In this paper, the pre-ight performance of the gamma-ray detector system and the satellite bus system are presented.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE ≤ 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1–2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60–600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5–80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy
universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV.
These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3–12 keV with
high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of
thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5–80 keV, located in the focal plane of
multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4–12 keV,
with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera
type soft gamma-ray detector, sensitive in the 40–600 keV band. The simultaneous broad bandpass, coupled
with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
Gamma-ray bursts (GRBs) are the most drastic and intriguing phenomena in high energy astrophysics. The nature of relativistic collimated outflows that bight be generated by gravitational collapses of massive stars is to investigate the physical process just around the central engines by constraining magnetic environment. For this purpose we developed a compact and high sensitive hard x-ray polarimeter aboard a university class micro-satellite "TSUBAME." Unsurprisingly, any micro-satellites have stringent limitations on size, mass, and power consumption restricting the effective area of detectors. However, high luminosities of GRBs allow us to measure their polarizations only if we start observations just after the ignitions. TSUBAME overcomes this problem by using compact an high-torque actuators, control moment gyroscopes, that enable high speed attitude control faster than 6° s-1. Cooperating with a wide field burst monitor on board for real time position determination of GRBs, TSUBAME can start a pointing observation within ~15 s after the detection for any GRBs in the half-sky field of view of the burst monitor.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the
high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular
resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination
of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray
mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV)
provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD
camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray
detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led
by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of
ΔE ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be
pursued.
KEYWORDS: Avalanche photodetectors, Gamma radiation, Sensors, Signal processing, Cameras, Data conversion, Scintillation, Digital filtering, Crystals, Digital signal processing
Soft Gamma-ray Detector (SGD:40-600 keV) will be mounted on the 6th Japanese X-ray observatory ASTROH
to be launched in 2014. The main part of the SGD is a Compton camera with a narrow field of view and
surrounded by BGO active shields (SGD-BGO). Via this combination, the SGD can achieve sensitivity more than
ten times superior to the Suzaku/HXD. The BGO active shield will also function as a gamma-ray burst monitor
as proven by the wide-band all-sky monitor (WAM) of the Suzaku/HXD. Avalanche Photodiodes (APDs) are
used to read out scintillation lights from the BGO. The size of the former also means we need to focus on
collecting light from large, complex-shaped BGO blocks. The significant leakage current of the APD means a
lower temperature is preferred to minimize the noise while a higher temperature is preferred to simplify the
cooling system. To optimize the BGO shape and the operating temperature, we tested the performance of the
BGO readout system with various BGO shapes under different operating temperatures. We also apply waveform
sampling by flash-ADC and digital filter instead of a conventional analog filter and ADC scheme to reduce the
space and power of the circuit with increased flexibilities. As an active shield, we need to achieve a threshold
level of 50-100 keV. Here, we report on the studies of threshold energy of active shield under various conditions
and signal processings.
The Hard X-ray Imager (HXI) is one of four detectors on board the ASTRO-H mission (6th Japanese X-ray
satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon
strip detectors and a cadmium telluride double-sided strip detector, the instrument fully covers the energy range
of photons collected with the hard X-ray telescope up to 80 keV with a high quantum efficiency. High spatial
resolution of 250 μm and an energy resolution of 1-2 keV (FWHM) are both achieved with low noise front-end
ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the
successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the
instrument to achieve an extremely high background reduction caused by cosmic-ray particles, cosmic X-ray
background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest
results of the detector development, and the current status of the hardware.
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage
and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will
feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on
orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The
SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield
where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as
a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good
energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due
to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive
to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes.
The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected
launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed
description of the instrument and expected performance.
T. Toizumi, Y. Yatsu, T. Nakamori, J. Kataoka, Y. Tsubuku, Y. Kuramoto, T. Enomoto, R. Usui, N. Kawai, K. Akiyama, S. Inagawa, H. Ashida, K. Omagari, N. Miyashita, S. Matsunaga, Y. Ishikawa, Y. Matsunaga, N. Kawabata
KEYWORDS: Avalanche photodetectors, Particles, Electrons, Satellites, Sensors, Auroras, Avalanche photodiodes, Aerospace engineering, Control systems design, Control systems
Cute-1.7+APD II is the third pico-satellite developed by students at the Tokyo Institute of Technology. One of
the primary goals of the mission is to validate the use of avalanche photodiodes (APDs) as a radiation detector
for the first time in a space experiment. The satellite was successfully launched by an ISRO PSLV-C9 rocket
in Apr 2008 and has since been in operation for more than 20 months. Cute-1.7+APD II carries two reversetype
APDs to monitor the distribution of low energy particles down to 9.2 keV trapped in a Low Earth Orbit
(LEO), including South Atlantic Anomaly (SAA) as well as aurora bands. We present the design parameters
and various preflight tests of the APDs prior to launch, particularly, the high counting response and active
gain control system for the Cute-1.7+APD II mission. Examples of electron/proton distribution, obtained in
continuous 12-hour observations, will be presented to demonstrate the initial flight performance of the APDs in
orbit.
MAXI (Monitor of All-sky X-ray Image) is a payload on board the International Space Station,
and will be launched on April 2009.
We report on the current development status on MAXI, in particular on the two types of X-ray camera (GSC and SSC),
and the simulation results of the MAXI observation.
SSC is a CCD camera.
The moderate energy resolution enables us to detect the various emission peak including 0.5 keV oxygen line.
The averaged energy resolution at the CCD temperature of -70 deg is 144.5 eV (FWHM) for 5.9 keV X-ray.
GSC includes proportional gas counters, which have large X-ray detection area (5350cm2).
The averaged position resolution of 1.1mm at 8 keV enable us to determined the celestial position of bright sources
within the accuracy of 0.1 degree.
The simulation study involving the results of performance test exhibits the high sensitivity of MAXI as designed.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS)
by a space shuttle crew in early 2009,
to scan almost the entire sky once every 96 minutes for
a mission life of two to five years. The detection sensitivity will be
5 mCrab (5σlevel) for a one-day MAXI operation, 2 mCrab for one week,
and 1 mCrab for one month, reaching a source confusion limit of 0.2 mCrab in two years.
In this paper, brief descriptions are presented for the MAXI mission and payload, and
three operation phases, 1) the launch-to-docking phase, 2) the initial in-orbit calibration phase,
and 3) the routine operation phase. We also describes the MAXI data product and its release plan for public users.
The Hard X-ray Imager (HXI) is one of three focal plane detectors on board the NeXT (New exploration X-ray
Telescope) mission, which is scheduled to be launched in 2013. By use of the hybrid structure composed of
double-sided silicon strip detectors and a cadmium telluride strip detector, it fully covers the energy range of
photons collected with the hard X-ray telescope up to 80 keV with a high quantum efficiency. High spatial
resolutions of 400 micron pitch and energy resolutions of 1-2 keV (FWMH) are at the same time achieved with
low noise front-end ASICs. In addition, thick BGO active shields compactly surrounding the main detection
part, as a heritage of the successful performance of the Hard X-ray Detector (HXD) on board Suzaku satellite,
enable to achive an extremely high background reduction for the cosmic-ray particle background and in-orbit
activation. The current status of hardware development including the design requirement, expected performance,
and technical readinesses of key technologies are summarized.
MAXI is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image
every ISS orbit. If MAXI scans the sky during one week, it could make a milli-Crab X-ray all sky map excluding bright
region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if
once they occur, but also observes long-term variability of Galactic and extra-Galactic X-ray sources. MAXI also
provides an X-ray source catalogue at that time with diffuse cosmic X-ray background.
MAXI consists of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD
cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight
modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis
software including alert system on ground are being developed by mission team.
In this paper we report an overview of final instruments of MAXI and capability of MAXI.
The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy
non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to
provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher
sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to
secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience
of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi
layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a
few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to
further improve the sensitivity and reliability is on-going.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky scanner, which will be attached on Exposed Facility of Japanese Experiment Module dubbed "Kibo" of International Space Station (ISS). MAXI will be launched by the Space Shuttle or the Japanese H-IIA Transfer Vehicle (HTV) in 2008. MAXI carries two types of X-ray cameras: Solid-state Slit Camera (SSC) for 0.5-10 keV and Gas Slit Camera (GSC) for 2-30 keV bands. Both have long narrow fields of view (FOV) made by a slit and orthogonally arranged collimator plates (slats). The FOV will sweep almost the whole sky once every 96 minutes by utilizing the orbital motion of ISS. Then the light curve of an X-ray point source become triangular shape in one transit. In this paper, we present the actual triangular response of the GSC collimator, obtained by our calibration. In fact they are deformed by gaps between the slats, leaning angle of the slats, and the effective width of the slats. We are measuring these sizes by shooting X-ray beams into the detector behind the collimator. We summarize the calibration and present the first compilation of the data to make the GSC collimator response, which will be useful for public users.
The Polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from astrophysical objects in the 30-200 keV range. It is under development for the first flight anticipated in 2008. PoGO is designed to minimize the background by an improved phoswich configuration, which enables a detection of 10 % polarization in a 100 mCrab source in a 6--8 hour observation. To achieve such high sensitivity, low energy response of the detector is important because the source count rate is generally dominated by the lowest energy photons. We have developed new PMT assemblies specifically designed for PoGO to read-out weak scintillation light of one photoelectron (1 p.e.) level. A beam test of a prototype detector array was conducted at the KEK Photon Factory, Tsukuba in Japan. The experimental data confirm that PoGO can detect polarization of 80-85 % polarized beam down to 30 keV with a modulation factor 0.25 ± 0.05.
Monitor of All-sky X-ray Image(MAXI) is an X-ray all sky monitor, which will be attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) around the year 2008. MAXI carries two types of scientific instruments. The Gas Slit Camera(GSC) consists of twelve Xe filled one-dimensional position sensitive gas proportional counters sensitive to X-ray in 2-30 keV band. The Solid-state Slit Camera (SSC) is a set of X-ray CCD arrays sensitive to 0.5-10 keV photons. Both detectors are utilized in combination with a slit
and orthogonally arranged collimator plates to produce one-dimensional X-ray images along sky great circles. The instruments are now under fabrication and preflight testing. A detector response matrix (DRM) of GSC is also under development phase based on flight model calibration tests for counters and collimators. MAXI's
overall performance depends on not only hardware characteristics but on the fact that the field-of-view changes in time even during observations. To study this complicated situation, we are developing a software, DRM builder, and also a simulation software to evaluate "realistic" performance of GSC in ISS orbits.
Cute-1.7 is a pico-satellite mainly developed by students at Tokyo Institute of Technology (Tokyo Tech). This will be the second satellite built at Tokyo Tech after the first one, CUTE-I, which was launched in June 2003. The configuration of Cute-1.7 is a 10 cm × 10 cm × 20 cm box with a mass of 2 kg. The engineering objective of Cute-1.7 is to validate commercially available products such as Personal Digital Assistances (PDAs) in the space environment, and to demonstrate a "satellite core concept" which is dividing a satellite into a bus component and a mission component to adopt various missions. The scientific objective is to demonstrate the performance of avalanche photo diodes (APDs) as future X-ray detectors used in the space environment. Results of this mission will provide the first feedback for a space application of APD such as Japan's future X-ray astronomy mission NeXT.
We propose a university-class micro-satellite "Hu-ring" to localize
and study gamma-ray bursts. The primary mission of "Hu-ring" is to
localize gamma-ray bursts with an 10 arcmin accuracy in real time, and
transmit promptly the coordinates to the ground. Although many of its
mission concepts are modeled after HETE-2, use of avalanche
photodiodes (APDs), innovative photon detector device, make it
possible to further reduce the size and the mass of the satellite. We
designed "Hu-ring" within a size of 50 cm cube and a weight limit of 50 kg, so that it can be launched as a piggy-back payload of the Japanese H-IIA Launch Vehicle. The satellite is spin-stabilized, and has a half-sky field of view centered on the anti-sun direction. A set of scintillation counters equipped with rotation modulation collimators are employed for localization of GRBs. We also measure the soft/medium X-ray spectra of GRBs using APDs as a direct X-ray photon detectors. These two kinds of instruments cover the 0.5--200 keV energy range. The satellite bus is designed mostly with commercially available components in order to reduce the cost and the lead time. Following the HETE-2 model, in order to receive the prompt burst alerts it is designed to rely on a global network of receive-only low-cost ground stations, which may be hosted at research instutions with a small footprint. We performed analyses in many aspects: mechanical and thermal design of the satellite bus, attitude control simulations, power budget, ground contact schedule and downlink capacity, etc. We verified that the mission goal can be achieved with this proposed design philosophy.
The NeXT mission has been proposed to study high-energy non-thermal phenomena in the universe. The high-energy response of the super mirror will enable us to perform the first sensitive imaging observations up to 80 keV. The focal plane detector, which combines a fully depleted X-ray CCD and a pixelated CdTe detector, will provide spectra and images in the wide energy range from 0.5 keV to 80 keV. In the soft gamma-ray band upto ~1 MeV, a narrow field-of-view Compton gamma-ray telescope utilizing several tens of layers of thin Si or CdTe detector will provide precise spectra with much higher sensitivity than present instruments. The continuum sensitivity will reach several x 10-8 photons/s/keV/cm2 in the hard X-ray region and a few x 10-7 photons/s/keV/cm2 in the soft gamma-ray region.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS) in 2008, to scan almost the whole sky once every 96 minutes for a mission life of two years. The detection sensitivity will be 7~mCrab (5σ level) in one scan, and 1~mCrab for one-week accumulation. At previous SPIE meetings, we presented the development status
of the MAXI payload, in particular its X-ray detectors. In this paper, we present the whole picture of the MAXI system, including the downlink path and the MAXI ground system. We also examine the MAXI system components other than X-ray detectors from the point of view of the overall performance of the mission. The engineering model test of the MAXI X-ray slit collimator shows that we can achieve the position determination accuracy of <0.1 degrees, required for the ease of follow-up observations. Assessing the downlink paths, we currently estimates that the MAXI ground system receive more than 50% of the observational data in "real time" (with time delay of a few to ten seconds), and the rest of data with delay of 20 minutes to a few hours from detection, depending on the timing of downlink. The data will be processed in easily-utilised formats, and made open to public users through the Internet.
We have developed a robotic telescope at Tokyo Institute of Technology (Tokyo Tech) to perform rapid follow-up observations of early optical afterglows of gamma-ray bursts (GRBs). Our system was primarily designed to respond quickly to the GRB locations notified by the High Energy Transient Explorer 2 (HETE-2) satellite, but it can also respond to all the notifications provided by the GRB Coordinates Network (GCN). In order to cover the error circle of the HETE-2 wide-field and thermo-electrically cooled CCD camera is equipped on the focus of a small 30 cm telescope. A field of view of our system is 44 arcminutes which can cover the most error circles of the HETE-2. The rapid response (less than 15 sec after the notice) and slew speeds (6 deg/sec) make our system appropriate for observing GRB afterglows. Using this convenient system, we detected the optical afterglow of GRB 030329. Observation was started 67 minutes after the burst, which was one of the earliest detection in the world. We report the performance of our telescope coupled to CCD camera, and estimate the limiting magnitude of our system. Although our system is located in a region affected by strong city lights, the limiting magnitude is approximately 17.3 mag.
We report on the performance of the most recent avalanche photodiodes produced by Hamamatsu Photonics, as low-energy X-rays and γ-rays detectors. APDs share good features of both photo diodes and PMTs, as they are very compact, produce an internal gain of 10-100, and have a high quantum efficiency close to 100% in the visible right. Until very recently, however, APDs were limited to very small surfaces, and were mainly used as a digital device for light communication. We have developed large area (up to 10x10 mm2) APDs which can be used in the physics experiments. The best energy resolution of 6.4% (FWHM) was obtained in direct detection of 5.9 keV X-rays. The FWHM results of 9.4% and 4.9% were obtained for 59.5 keV and 662 keV γ-rays respectively, as measured with the CsI(Tl) crystal. The minimum detectable energy for the scintillation light was as low as 1 keV at lightly cooled environment (-20°C). Note that our results are the best records ever achieved with APDs. Various applications of APDs are presented for future space research and nuclear medicine. In particular 2-dimensional APD arrays will be a promising device for a wide-band X-ray and γ-ray imaging detector.
MAXI is an X-ray all-sky monitor which will be mounted on the Japanese Experimental Module (JEM) of the International Space Station (ISS) in 2008. The Gas Slit Camera (GSC) consists of 12 one-dimensional position sensitive proportional counters and the sensitivity will be as high as 1 mCrab for a one-week accumulation in the 2-30 keV band. In order to calibrate the detectors and electronic systems thoroughly before the launch, a fast and
versatile Ground Support Electronic (GSE) system is necessary. We have developed a new GSE based on VME I/O boards for a Linux workstation. These boards carry reconfigurable FPGAs of 100,000 gates, together with 16 Mbytes of SDRAM. As a demonstration application of using this GSE, we have tested the positional response of a GSC engineering counter. We present a schematic view of the GSE highlighting the functional design, together with a future vision of the ground testing of the GSC flight counters and digital associated processor.
The current status is reported of the development of Monitor of All-sky X-ray Image and the measurement of its observational response. MAXI is a scanning X-ray camera to be attached to the Japanese Experiment Module of the International Space Station in 2008. MAXI is mainly composed of two kinds of instruments, GSC which is sensitive to the 2 - 30 keV photons, and SSC to the 0.5 - 10 keV ones. As an X-ray all-sky monitor, MAXI has an unprecedented sensitivity of 7 mCrab in one orbit scan, and 1 mCrab in one week. Using the engineering mode of the proportional counter and of the collimator for GSC, the observational response of GSC is extensively measured. The acceptable performances are obtained as a whole for both the collimator and the counter. The engineering models of the other part of MAXI are also constructed and the measurement of their performance is ongoing.
The hard x-ray detector (HXD) is one of the three experiments of the Astro-E mission, the fifth Japanese X-ray Satellite devoted to studies of high energy phenomena in the universe in the x-ray to soft gamma-ray region. Prepared for launch at the beginning of 200 via the newly developed M-V launch vehicle of the Institute of Space and Astronomical Science, the Astro-E is to be thrown in to a near-circular orbit of 550 km altitude, with an inclination of 31 degrees. The flight model has been finished assembled this year, and we carried out various tests to verify the performance. We acquired the background spectrum at sea level, and confirmed that our system is operating effectively in reducing the background level. The HXD will observe photons in the energy range of 10-600 keV, and the calculations based on the preflight calibration suggest that the HXD will have the highest sensitivity ever achieved in this energy range. We also verified that our electronic system will maintain its performance against charged particle events expected in orbit.
KEYWORDS: Field programmable gate arrays, Sensors, Genetical swarm optimization, Data acquisition, Clocks, Hard x-rays, Analog electronics, Sun, Logic, Signal processing
We report the first results of the ground test of the Hard X-ray Detector (HXD) on board the Astro-E mission, by means of the newly developed Ground Support Equipment (GSE). Astro-E will be launched in 2000 by a Japanese M-V rocket. In order to verify the detector system during the limited time before launch, fast and versatile GSE is necessary. For this, we have developed a flexible test system based on nine VME I/O boards for a SUN workstation. These boards carry reconfigurable Field Programmable Gate Arrays with 50,000 gates, together with 1 Mbyte SRAM devices tightly coupled to each FPGA device. As an application of using this GSE, we have tested the performance of a phoswitch unit of the Flight Model of the HXD. In this paper, we present a schematic view of the GSE highlighting the functional design,and the result of our ground test of the HXD-sensor under the high count rate environment expected in orbit.
The Hard x-ray Detector (HXD) is one of three instruments on the fifth Japanese x-ray astronomy satellite, Astro-E, scheduled for launch in 2000. The sensitivity of the Astro-E HXD will be higher by more than one order of magnitude than that of nay previous instrument between 10 keV and several 100 keV. The electronic system is designed to handle many independent data channels from the HXD within the limitation of size and power consumption required in Astro-E. In this paper, we will present the design and the preliminary performance of the processing electronic system.
We have developed the analog electronics of the ASTRO-E hard x-ray detector (HXD). The ASTRO-E is the fifth Japanese x-ray astronomy satellite scheduled for launch in 2000. Three experiments will be on board the satellite, one of which being the HXD. The detector consists of 16 units of well-type phoswich counters with silicon PIN diodes embedded therein, and covers the energy range of 10 approximately 600 keV with photon collecting area of about 350 cm2. The readout circuit for the HXD handles many signal channels (96 channels in total) under the limitation of power consumption and size set by the satellite. To meet the limitations, we have developed two types of bipolar semicustom LSIs. One is the pulse-shape discriminator (PSD-LSI) for phoswich counters and the other is for silicon PIN diodes (PIN-LSI). The PSD-LSI selects clean GSO hits and reduces the off-aperture x rays and internal background of the detector down to 10-5 c/s/cm2keV. One PIN-LSI handles signals from two PIN diodes, each consisting of an amplifier, a peak-hold circuit, and a comparator to trigger the readout system. Test pieces of these LSIs meet the specifications such as power consumptions and linearities. Using PIN-LSI, we could successfully obtain x-ray spectrum from 241Am with a PIN diode.
Astro-E is the x-ray satellite to be launched in the year 2000 by Inst. of Space & Astronautical Science. This report deals with the design and expected performance of the hard x-ray detector (HXD), one of the 3 experiments aboard Astro- E. The HXD is a combination of GSO/BGO well-type phoswich counters and silicon PIN diodes: the two combined will cover a wide energy band of 10 - 700 keV. The detector is characterized by its low background of approximately 10-5/s/cm2/keV and its sensitivity higher than any past missions between a few 10 keV and several 100 keV. Combined with the other 2 experiments, a micro-calorimeter array (XRS) and 4 CCD arrays (XIS), both with x-ray mirrors, the mission will cover the soft and hard x-ray range at a highest sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.