KEYWORDS: Data modeling, Analytic models, Computing systems, Sensors, Data fusion, Computer simulations, Analytics, Internet of things, Industry, Ecosystems
Digital twin engineering is a disruptive technology that creates a living data model of industrial assets. The living model will continually adapt to changes in the environment or operations using real-time sensory data as well as forecast the future of the corresponding infrastructure. A digital twin can be used to proactively identify potential issues with its real physical counterpart, allowing the prediction of the remaining useful life of the physical twin by leveraging a combination of physics-based models and data-driven analytics. The digital twin ecosystem comprises sensor and measurement technologies, industrial Internet of Things, simulation and modeling, and machine learning. This paper will review the digital twin technology and highlight its application in predictive maintenance applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.