Conventional metalens design is based on the library where phases and transmissions of the meta-atoms are calculated with the periodic boundary condition. And the most suitable meta-atom is picked up from the library ignoring its environment. However, the coupling between adjacent meta-atoms produces the phase error, leading to low efficiency and scattering of the metalens. We proposed a method of numerical optimization of the wavefront error by adjusting the meta-atoms size, which reduces phase errors leading to higher efficiency compared to the conventional metalens design. This method is scalable for a large size metalens and for metalens with an arbitrary phase profile.
We introduce well-developed optical proximity correction (OPC) techniques to the metasurface-based flat optics manufacturing process. Flat optics, formed by subwavelength scale nanostructure pillar (nanopillar) array, so called metasurface, has become promising substitutes for conventional bulky optical components. For its manufacturing, photolithography is preferable rather than the electron beam lithography (EBL) technique because of its time and cost effectiveness for mass manufacturing. However, the required feature size and pitch of the metasurface for the visible light is approaching the process limit of the ArF immersion lithography. It results in critical dimension (CD) errors due to optical proximity effect and could result in efficiency degradation of the flat optics. In the semiconductor manufacturing industry, OPC based on process modelling and numerical computation has been developed for the last few decades to control the CD on the wafer. Here, a machine learning (ML) model is constructed to avoid the time consumption of the conventional OPC method without losing the accuracy. Various pitches of flat optics metalens, from 465 nm to 160 nm, has been studied for the implementation of the ML OPC. The root mean square (RMS) CD errors < 1 nm and the CD accuracies < 6 nm can be achieved. The CD error percentages over the pillar diameters < 6 % is observed and the improvement of CD error and CD accuracy compared to rule based OPC in small pitches of metalens is demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.