In this paper, we report on plasma assisted thermal Atomic Layer Etching (ALE) of Al2O3. The surface was modified via a fluorine containing plasma without bias power. The removal was accomplished by a thermal reaction step using tin-(II) acetylacetonate Sn(acac)2. After a few cycles, material removal stopped and growth of a Sn-containing layer was observed. Insertion of a hydrogen plasma step was found to remove the Sn layer and a continuous material removal of 0.5 Å/cycle was measured. The results show that plasma assistance can be used to realize thermal ALE of Al2O3. Specifically, plasma can be used both in the fluorination step and to keep the surface free from contaminations.
Relentless scaling of advanced integrated devices drives feature dimensions towards values which can be expressed in small multiples of the lattice spacing of silicon. One of the consequences of dealing with features on such an atomic scale is that surface properties start to play an increasingly important role. To encompass both dimensional as well as compositional and structural control, we introduce the term “atomic scale fidelity.” In this paper, we will discuss the challenges as well as new solutions to achieve atomic scale fidelity for patterning etch processes. Fidelity of critical dimensions (CD) across the wafer is improved by means of the Hydra Uniformity System. Wafer, chip and feature level atomic scale fidelity such as etch rate uniformity, aspect ratio dependent etching (ARDE) /1/, selectivity and surface damage can be addressed with emerging atomic layer etching (ALE) approaches /2/.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.