Epsilon-Near-Zero (ENZ) materials have gained interest due to their unusual linear and large nonlinear optical response. Here, we demonstrate that plasmonic dipole nanoantennas on a graded ENZ substrate have optical properties significantly different from antennas on a conventional ENZ substrate. Our hybrid nanoantenna-graded ENZ metasurface offers an efficient nonlinear optical platform.
The ability to precisely measure the displacement between two elements, e.g. a mask and a substrate or a beam and optical elements, is fundamental to many precision experiments and processes. Yet typical optical displacement sensors struggle to go significantly below the diffraction limit. Here we combine advances in our understanding of directional scattering from nanoparticles with silicon photonic waveguides to demonstrate a displacement sensor with deep subwavelength accuracy. Depending on the level of integration and waveguide geometry used we achieve a spatial resolution between 5 − 7 nm, equivalent to approximately λ/200 − λ/300.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.