Intravascular optical coherence tomography (IVOCT) provides high-resolution images of coronary calcifications and detailed measurements of acute stent deployment following stent implantation. Since pre- and post-stent IVOCT image “pull-back” acquisitions start from different locations, registration of corresponding pullbacks is needed for assessing treatment outcomes. In particular, we are interested in assessing finite element model (FEM) prediction of lumen gain following stenting, requiring registration. We used deep learning to segment calcifications in corresponding pre- and poststent IVOCT pullbacks. We created 1D representations of calcium thickness as a function of the angle of the helical IVOCT scans. Registration of two scans was done by maximizing the cross correlation of these two 1D representations. Registration was accurate, as determined by visual comparisons of 2D image frames. We used our pre-stent calcification segmentations to create a lesion-specific FEM, which took into account balloon size, balloon pressure, and stent measurements. We then compared simulated lumen gain from FEM analysis to actual stent deployment results. Actual lumen gain across ~200 registered pre and post-stent images was 1.52 ± 0.51, while FEM prediction was 1.43 ± 0.41. Comparison between actual and FEM results showed no significant difference (p < 0.001), suggesting accurate prediction of FEM modeling. Registered image data showed good visual agreement regarding lumen gain and stent strut malapposition. Hence, we have developed a platform for evaluation of FEM prediction of lumen gain. This platform can be used to guide development of FEM prediction software, which could ultimately help physicians with stent treatment planning of calcified lesions.
Because coronary artery calcified plaques can hinder or eliminate stent deployment, interventional cardiologists need a better way to plan interventions, which might include one of the many methods for calcification modification (e.g., atherectomy). We are imaging calcifications with intravascular optical coherence tomography (IVOCT), which is the lone intravascular imaging technique with the ability to image the extent of a calcification, and using results to build vesselspecific finite element models for stent deployment. We applied methods to a large set of image data (<45 lesions and < 2,600 image frames) of calcified plaques, manually segmented by experts into calcified, lumen and “other” tissue classes. In optimization experiments, we evaluated anatomical (x, y) versus acquisition (r,θ) views, augmentation methods, and classification noise cleaning. Noisy semantic segmentations are cleaned by applying a conditional random field (CRF). We achieve an accuracy of 0.85 ± 0.04, 0.99 ± 0.01, and 0.97 ± 0.01, and F-score of 0.88 ± 0.07, 0.97 ± 0.01, and 0.91 ± 0.04 for calcified, lumen, and other tissues classes respectively across all folds following CRF noise cleaning. As a proof of concept, we applied our methods to cadaver heart experiments on highly calcified plaques. Following limited manual correction, we used our calcification segmentations to create a lesion-specific finite element model (FEM) and used it to predict direct stenting deployment at multiple pressure steps. FEM modeling of stent deployment captured many features found in the actual stent deployment (e.g., lumen shape, lumen area, and location and number of apposed stent struts).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.