This paper describes optics designed for the application of edge emitting LEDs (EELEDs) in retinal scanned displays (RSD). Directly modulated semiconductor light sources are scanned onto the retina to generate high-resolution displays. Red visible laser diodes produce high brightness monochrome scanned displays, or when combined with blue and green sources, generate full color displays. Green CW, room temperature visible laser diodes with any appreciable lifetime are currently unavailable for such applications. Blue and Green InGaN EELEDs have sufficient radiance and modulation speed for RSD applications, but lack the optical gain and stimulated emission required for laser diode optical power levels. Consequently, bright EELED-based displays require designs for maximizing the system optical collection efficiency. This paper describes anamorphic collection optics designed for optimizing the brightness and resolution of retinal-scanned microdisplay systems incorporating EELEDs. This design utilizes the laser-diode-like characteristics of EELEDs to maximize the collected useable optical power.
We propose a new direct overwrite scheme that requires no initialization field. The scheme uses a preformated reference layer to assist on writing and erasure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.