This paper presents the fabrication, characterization, and simulation of microelectrode arrays system with tapered profile having an aluminum surface for dielectrophoresis (DEP)-based manipulation of particles. The proposed structure demonstrates more effective electric field gradient compared with its counterpart with untapered profile. Therefore, according to the asymmetric distribution of the electric field in the active region of microelectrode, it produces more effective particle manipulation. The tapered aluminum microelectrode array (TAMA) fabrication process uses a state-of-the-art technique in the formation of the resist’s taper profile. The performance of TAMA with various sidewall profile angles (5 deg to 90 deg) was analyzed through finite-element method numerical simulations to offer a better understanding of the origin of the sidewall profile effect. The ability of capturing and manipulating of the device was examined through modification of the Clausius–Mossotti factor and cross-over frequency (fx0). The fabricated system has been particularly implemented for filtration of particles with a desired diameter from a mixture of particles with three different diameters in an aqueous medium. The microelectrode system with tapered side wall profile offers a more efficient platform for particle manipulation and sensing applications compared with the conventional microelectrode systems.
Dielectrophoresis (DEP) is a phenomenon in which force exerted on a dielectric particle when it is subjected to a nonuniform electric field. There are many applications of dielectrophoresis and one of them is the separation of particles. In this paper, castellated and straight electrodes are being introduced for negative dep filter of an artificial kidney. In order to avoid the filters from clogging, negative dep will take part to repel the particles. Thus, a simulation by using COMSOL Multiphysics had been done to compare the electrical performances of electrodes. The intensities of electric field were stimulated on the planar electrodes from top to bottom and left to right. Electrodes are made of aluminum and both have thickness of 50μm. Distance between the castellated electrodes are 100μm while the straight electrodes are 300μm. Three graph of electric field vs. length had been compared. The first comparison shows that both designs have similar flow of electric field. The second graphs show that castellated electrodes have higher electric field, 27.14kV/m and third comparison shows a cluster increase for castellated electrodes and uniform increase for straight electrodes. Final result shows that castellated electrodes are intended to use for artificial kidney.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.