Two-dimensional transition metal dichalcogenides (TMDC) and MoS2 in particular are promising materials as sensitive layers for gas sensing due to room operation temperature, high sensitivity, low dimensions, vast methods of selectivity alteration, etc. MoS2 response to toxic gases exposure depends on applied electric field that expands capabilities of resistive detection techniques, therefore, requires in-depth study. We fabricated a back-gated MoS2 based field-effect transistor (MoS2-FET) with standard photolithography technique on Si/SiO2 substrate. AFM microscopy confirmed the single layer nature of MoS2 flakes by cross-section featuring a thickness of 0.7 nm. Raman spectroscopy revealed A1g and E12g modes position at 403.5 cm-1 and 382 cm-1 respectively. The mobility in the absence of passivation was about 10-1 cm2 V−1s−1. MoS2-FET exhibits room-temperature NH3 sensing with resistive response to 200 ppm exposure of about ~60%, signal-to-noise ratio about 8, and response/recovery time about 100 s.
Possibility of femtosecond laser pulses to affect the materials properties arises the interest in ultrafast processes based research and technology. In the case of graphene surface modification and functionalization using femtosecond laser, there are several effects appear, such as ablation, covalent bonding of different chemical groups, re-crystallization in three-dimensional shapes. CVD grown graphene was transferred on Si/SiO2. Through several lithography steps, graphene-based field-effect transistors were formed with Cr/Au source-drain electrodes and Si back gate electrode. For graphene modification we used 100 fs 80 MHz laser with 780 nm wavelength with different irradiation doses. Exposure of graphene to a femtosecond laser pulse is determined by the prevalence of physical or chemical effects during exposure to a laser pulse. The range of laser exposure was narrowed down to values causing the formation of atomic defects in the carbon lattice, which makes it possible to form nanopores in graphene and these doses are below the graphene ablation. The main tool for studying the effect of femtosecond laser irradiation was Raman spectroscopy. By evaluating the intensity ratio of certain peaks, namely the G-band (~1600 cm-1) and D-band (~ 1350 cm-1), the degree of functionalization, or amorphization of graphene, was estimated. It was found that the ablation threshold starts from 18 mW at the beam speed in the range of 400-500 μm/s. Just below this range, both graphene functionalization and a change in the graphene surface roughness were observed. Despite the change in the morphology of graphene, the graphene resistance fell by only ~4 times, and the transfer current-voltage curves of the graphene transistor did not change much, showing a shift towards higher voltages. With a decrease in the slope of the transfer current-voltage characteristics, the resistance of the structure also decreases with an increase in the dose of laser exposure, since the number of defects and functional groups in graphene increases. In addition, we found the effect of the laser polarization on the modification of graphene. The difference in parameters between the samples modified with different polarization directions along the direction of the beam motion can be explained as the interference interaction of the electron density in graphene. A beam passing over the graphene region excites hot electrons, which partially cause the graphene modification. After passing by the laser, the electron density does not have time to relax, and the next beam of photons affects the already excited electrons, increasing the total dose of laser radiation.
In this work, we report a novel method of mask-less doping of graphene channel in field-effect transistor configuration by local inkjet printing of organic semiconducting molecules. Graphene-based transistor was fabricated via large-scale technology, allowing for upscaling electronic device fabrication and lowering the device cost. The altering of functionalization of graphene was performed through local inkjet printing of semiconducting molecules: N,N′-Dihexyl- 3,4,9,10-perylenedicarboximide (PDI-C6), 5,5′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (HEX-4T-HEX) and polyalanine (PANI). We found the effect of UV treatment on fabrication of graphene/organic junctions because of change in graphene hydrophobic properties. We demonstrated the high resolution (about 50 μm) and accurate printing of organic ink on UV treated chemical vapor deposited (CVD) graphene. The PANI/graphene junction demonstrate more stable photoresponse characteristic for 470 nm diode illumination. The characteristics of PDI/graphene junction demonstrate the saturation for high diode power because of organic crystals degradation. The photoresponse of 1 mA/W was demonstrated for PANI/graphene junction at 0.3 V bias voltage. The developed method opens the way for local functionalization of on-chip array of graphene by inkjet printing of different semiconducting organic molecules for photonics and electronics application.
Carbon nanotube still holding the promising application in ultimate response sensors because of possibility of individual nanotubes operation for single molecular detection. The technology of local positioning of carbon nanotubes is well developed and integrated to conventional microelectronics processes. The problem is in relatively inert behavior of carbon atomic lattice that do not provide good charge transfer between nanotubes and small molecules decreasing the responsivity of sensors. The promising area of gas sensors for ammonia and nitrogen dioxide is covered by functionalized carbon nanotubes. Simply fabricated by chemical vapor deposition carbon nanotubes allow to functionalize them directly on substrate without working with solution. The effect of UV treatment on gas response changes for samples processed during different time and in two different atmospheres was investigated. In this report we study the process of UV functionalization of single-walled carbon nanotubes networks using Raman spectroscopy and atomic force microscopy. The dependence of carbon nanotubes sensitivity from UV processing time was evaluated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.