KEYWORDS: Zerodur, Temperature metrology, Cryogenics, Mirrors, Interferometers, Interferometry, Laser sources, Precision measurement, James Webb Space Telescope, Temperature sensors
Three samples of Schott Zerodur were recently measured using Jet Propulsion Laboratory's Cryogenic Dilatometer Facility. The initial purpose of these tests was to provide precision CTE measurements to help correlate thermomechanical models with the actual performance of NASA's Space Interferometry Mission (SIM) TOM-1C testbed. A total of six Zerodur test samples, as well as the SIM testbed mirror were machined from the same block of glass. Thermal strain as a function of time, sample temperature, and cooling rate were measured over a temperature range of 270K to 310K. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.
Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre-selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 310K. Expansion and contraction of the test samples with temperature was measured using a JPL-developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.
KEYWORDS: Cryogenics, James Webb Space Telescope, Interferometers, Electronics, Laser sources, Cryocoolers, Temperature metrology, Zerodur, Vibration isolation, Control systems
As part of the James Webb Space Telescope (JWST) materials working group, a novel cryogenic dilatometer was designed and built at NASA Jet Propulsion Laboratory to help address stringent coefficient of thermal expansion (CTE) knowledge requirements. Previously reported results and error analysis have estimated a CTE measurement accuracy for ULE of 1.7 ppb/K with a 20K thermal load and 0.1 ppb/K with a 280K thermal load. Presented here is a further discussion of the cryogenic dilatometer system and a description of recent work including system modifications and investigations.
The 2003 mission to Mars includes two Rovers, which will land on the Martian surface. Each Rover carries 9 cameras of 4 different designs. In addition, one similar camera is mounted to each lander assembly to monitor the descent and provide information for firing the control jets during landing. This paper will discuss the mechanical systems design of the cameras, including fabrication tolerances of the lenses, thermal issues, radiation shielding, planetary protection, detector mounting, electronics, the modularity achieved, and how the 10 different locations were accommodated on the very tight real estate of the Rovers and Landers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.