We present the optical fiber sensor based on fused silica capillary as a sensing element spliced between the lead-in and lead-out singlemode (SM) fibers. In the region of the splice the cladding modes of capillary are excited from the fundamental mode of led-in SM fiber. The intermodal interference of the propagating cladding modes results in the formation of the resonant peaks in the transmission spectrum. With the variations of the external refractive index the shift of resonance wavelength of the peak can be observed. The sensitivity for the refractive index values around n=1.33 is observed and using the wet etching technique can be increased, what gives an assumption for its using in a biomedical sensing applications.
We have measured the dependence of transfer function of endlessly single mode photonic crystal fiber on the bends
radius. The results are confirmed by numerical simulations. New questions on bending insensitivity of the Photonic
Crystal Fibers and effective refractive index approximation of the Photonic Crystal Fiber arise as result.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.