The Solar X-ray Imager (SXI) was launched 24 May 2006 on Geostationary Operational Environmental Satellite
(GOES-13). SXI is a grazing incidence X-ray telescope that focuses an image of the Sun onto a CCD detector
through a set of selectable filters. The X-ray image data are transmitted at the rate of at least one image per minute,
which permits the reconstruction of near-real-time solar images in the 6-60Å range (photon energy 2000-200 eV).
Thin film filters consisting of aluminum, titanium, and polyimide are used in the entrance of the telescope to
eliminate visible light. During the first six months of on-orbit operations the amount of stray light transmitted
increased approximately linearly with time, consistent with the formation of small (less than 50 micron) pinholes. A
laboratory investigation was initiated and witness sample filters were subjected to energetic particles simulating the
on-orbit radiation environment and their quality was assessed using visible light-leak testing and scanning electron
microscope imaging. It was concluded that galvanic corrosion of aluminum and titanium initiates pinholes that
subsequently grow in dendritic fashion by spalling off of aluminum to relieve the internal film stress. The test
program also revealed that the geostationary radiation dose level can damage polyimide and lead to filter failure.
Radiation damage may have been responsible in part for the increased light levels observed in the GOES-12 SXI and
with increased exposure a similar observation could manifest on GOES-13 SXI. This paper presents the
methodology and results for the entrance filter test program for the GOES SXI telescopes and presents recommended
improvements for future instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.