3D printing of multi-material objects enables the design of complex 3D architectures such as printed electronics and devices. The ability to detect the composition of multi-material printed inks in real time is an enabling feature in a wide range of manufacturing sectors. In this study, dielectric properties of microscale embedded metal particles in a dielectric matrix have been characterized using impedance measurements as a function of particle size, shape, volume percentage and frequency. Measurements were found to agree well with calculations based on an anisotropic Maxwell-Garnett dielectric function model. Despite the metal loading exceeding the theoretical percolation threshold, a percolation transition was not observed in the experimental results. With this data, a calibration curve can be established to correlate metal loading with impedance or capacitance, which can be used with an in situ sensor for ink composition measurements during extrusion-based 3D printing. We demonstrate how an in situ sensor can locally measure the composition of the ink, allowing greater control over the resulting properties and functionality of printed materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.