Pipeline systems are critical infrastructure for modern economies, which serve as the essential means for transporting oil, gas, water, and other fluids. These pipelines are mostly buried underground, making their integrity highly crucial. Because they are buried, these pipelines are subject to stress and are prone to material degradation due to corrosion. Corrosion not only reduces the wall thickness of the pipes but also poses severe safety risks and can lead to catastrophic failures and substantial financial losses. Hence, there is an urgent need to develop accurate predictive models for evaluating pipe wall thickness. This paper aims to address this need by exploring machine learning-based algorithms to monitor the corrosion rates so that preventive measures can be taken to ensure pipeline integrity. Thus, four state-of-the-art machine-learning algorithms, namely, Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), Bidirectional Gated Recurrent Unit (Bi-GRU), and Long Short-Term Memory (LSTM) are employed to predict accurate wall thickness of pipelines. The empirical results show that the LSTM algorithm outperforms its counterparts, achieving a low root mean squared error (RMSE) of 0.0721 mm. Therefore, incorporating LSTM-based models into pipeline integrity programs can be a significant step forward to safeguard these critical infrastructures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.