Tracking solves the problem of detecting and estimating the future target state in an input video sequence. In this work, an adaptive tracking algorithm by means of multiple object detections in reduced frame areas with a tunable bank of correlation filters is proposed. Prediction of the target state is carried out with the Kalman filtering. It helps us to estimate the target state, to reduce the search area in the next frame, and to solve the occlusion problem. The bank of composite filters is updated frame by frame with tolerance to different recent viewpoint and scale changes of the target. The performance of the proposed algorithm with the help of computer simulation is evaluated in terms of detection and location errors.
Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.