KEYWORDS: Electrons, X-rays, Plasma, Optical filters, Photons, Pulsed laser operation, Electron beams, X-ray sources, Simulation of CCA and DLA aggregates, Synchrotrons
The dynamics of relativistic electrons in a laser driven plasma cavity are studied via measurements of their
radiation. For ultrashort laser pulses at comparatively low focused laser intensities (3 < a0 < 10), low density
and long f-number of 10, electrons are predominantly accelerated in the wakefield leading to quasi-monoenergetic
collimated electron beams and well collimated (< 12 mrad) beams of comparatively soft x-rays (1-10 keV) with
unprecedented small source size (2-3 μm). For laser pulses with increasing laser intensity (10 < a0 < 30),
density and short f-number (< 5), electrons are accelerated directly by the laser, leading to divergent quasimaxwellian
electron beams and divergent (50-95°) beams of hard x-rays (20-50 keV) with relatively large source
size (> 100 μm). In both cases, the measured x-rays are well described in the synchrotron asymptotic limit of
electrons oscillating in a plasma channel. At low laser intensity transverse oscillations are small as the electrons
are predominantly accelerated axially by the laser generated wakefield. At high laser intensity, electrons are
directly accelerated by the laser. A betatron resonance leads to a tenfold increase in transverse oscillation
amplitude and electrons enter a highly radiative regime with up to 5% of their energy converted into x-rays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.