Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.
A series of chemoselective polymers have been designed and synthesized in order to enhance the nitroaromatic sorption properties of coated acoustic wave devices. Acoustic wave devices coated with a thin layer of chemiselective polymer can provide highly sensitive transducers for the detection of vapors or gases. The sensitivity and selectivity of the sensor depends on several factors including the chemoselective coating used, the physical properties of the vapor(s) of interest, the selected transducer, and the operating conditions. To evalute the effectiveness of the chemoselective coatings a polynitroaromatic vapor test bed was utilized to challenge polymer coated SAW devices. Detection limits with the coated SAW sensors, as tested under laboratory conditions, are determined to be in the lower parts per trillion range. FTIR studies were undertaken to determine the nature of the polymer-polynitroaromatic interactions.
The solubility properties of a series of nitroaromatic compounds have been determined and utilized with known linear solvation energy relationships to calculate their sorption properties in a series of chemoselective polymers. These measurements and results were used to design a series of novel chemoselective polymers to target polynitroaromatic compounds. The polymers have been evaluated as thin sorbent coatings on surface acoustic wave (SAW) devices for their vapor sorption and selectivity properties. The most promising materials tested, include siloxane polymers functionalized with acidic pendant groups that are complimentary in their solubility properties for nitroaromatic compounds. The most sensitive of the new polymers exhibit SAW sensor detection limits for nitrobenzene and 2,4-dinitrotoluene at 3 parts per billion (ppb) and 235 parts per trillion (ppt) respectively. Optimized polymers exhibit low water vapor sorption, and rapid signal kinetics for nitrobenzene, reaching 90% of signal response in 4 seconds. Studies with an in-situ infra-red spectroscopy technique are used to determine the mechanism of interaction between nitroaromatic compounds and the chemoselective polymer.
A novel polymer processing technique, matrix assisted pulsed laser evaporation (MAPLE), for the deposition of organic and inorganic polymers and other materials, as ultrathin and uniform coatings has been developed. The technique involves directing a pulsed excimer laser beam onto a frozen matrix target composed of the polymeric material in a solvent. The process gently lifts polymeric material into the gas phase with no apparent decomposition. A plume of material is developed normal to the target, and a substrate positioned incident to this plume is coated with the polymer. The MAPLE technique offers a number of features that are difficult to achieve with other polymer coating techniques, including: nano-meter to micron thickness range, sub monolayer thickness precision, high uniformity, applicability to photosensitive materials, and patterning of surfaces. Highly functionalized polysiloxanes have been synthesized and deposited on a range of substrates by the MAPLE technique and characterized by: infrared spectroscopy, and optical microscopy. High quality, uniform and adherent polysiloxane coatings are produced by the optimized MAPLE technique. The physicochemical properties of the coating are unaffected by the process, and precise thickness control of the coating is straightforward.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.