The control of gene transcription is dependent on DNA-binding and coregulatory proteins that assemble in distinct regions of the cell nucleus. We use multispectral wide-field microscopy of cells expressing transcriptional coregulators labeled with fluorescent proteins (FP) to study the subnuclear localization and function of these factors in living cells. In coexpression studies, the glucocorticoid receptor interacting protein (GRIP) coactivator protein and the silencing mediator of retinoid and thyroid (SMRT) corepressor protein form spherical subnuclear focal bodies that are spatially distinct, suggesting that specific protein interactions concentrate these divergent proteins in separate subnuclear regions. However, the variability of these subnuclear bodies between cells within the population makes analysis based on "representative images" difficult, if not impossible. To address this issue, we develop a protocol for unbiased selection of cells from the population, followed by the automated quantification of the subnuclear organization of the labeled proteins. Statistical methods identify a significant linear correlation between the FP-coregulator expression level and subnuclear focal body formation for both FP-GRIP and FP-SMRT. Importantly, we confirm that these changes in subnuclear organization could be statistically normalized for differences in coregulator expression level. This integrated quantitative image analysis method will allow the rigorous comparison of different experimental cell populations that express variable levels of FP fusion proteins.
Wide-field fluorescence microscopy was used to monitor the co-localization of the homeodomain (HD) transcription factor Pit-1 and the basic-leucine zipper protein CCAAT/enhancer binding protein alpha (C/EBPa), each labeled with fluorescent proteins (FP) in the living cell nucleus. Fluorescence resonance energy transfer (FRET) microscopy was used to resolve the angstrom-scale spatial relationships of these expressed proteins, and the effect of a Pit-1 point mutation on the interaction with C/EBPa was characterized. Two-photon excitation fluorescence lifetime imaging microscopy (2p-FLIM) was then used as an independent method to detect these protein interactions. The excited-state lifetime for the cyan FP (CFP) labeling C/EBPa was determined, and the measurements were repeated in cells co-expressing yellow FP (YFP) labeled-proteins. The CFP lifetime was decreased in the presence of the YFP acceptor, which is consistent with donor quenching by FRET. This was verified by acceptor photobleaching, which caused a shift in the donor lifetime to that similar to the donor alone. However, a significant limitation of this technique was demonstrated by the observation that high-energy 2p-excitation resulted in CFP photobleaching and a parallel decrease in its excited-state lifetime. The key question is whether the sensitivity of this imaging approach will be sufficient to acquire significant data from living cells expressing physiological levels of the labeled proteins.
Regulated gene transcription is dependent on the steady-state concentration of DNA-binding and coregulatory proteins assembled in distinct regions of the cell nucleus. For example, several different transcriptional coactivator proteins, such as the Glucocorticoid Receptor Interacting Protein (GRIP), localize to distinct spherical intranuclear bodies that vary from approximately 0.2-1 micron in diameter. We are using multi-spectral wide-field microscopy of cells expressing coregulatory proteins labeled with the fluorescent proteins (FP) to study the mechanisms that control the assembly and distribution of these structures in living cells. However, variability between cells in the population makes an unbiased and consistent approach to this image analysis absolutely critical. To address this challenge, we developed a protocol for rigorous quantification of subnuclear organization in cell populations. Cells transiently co-expressing a green FP (GFP)-GRIP and the monomeric red FP (mRFP) are selected for imaging based only on the signal in the red channel, eliminating bias due to knowledge of coregulator organization. The impartially selected images of the GFP-coregulatory protein are then analyzed using an automated algorithm to objectively identify and measure the intranuclear bodies. By integrating all these features, this combination of unbiased image acquisition and automated analysis facilitates the precise and consistent measurement of thousands of protein bodies from hundreds of individual living cells that represent the population.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.