Measuring single molecules’ 3D orientations simultaneously with their 3D spatial localization is currently a topic of intense efforts in optical design. We have developed different methods based on polarized imaging, that are capable to report both 3D spatial localization and 3D orientation (including wobbling) from single molecules. We present how the design of such schemes can be adapted to account from experimental constraints versus accuracy and precision of the estimation of both orientation and localization parameters. We illustrate such performances on actin structural STORM imaging in complex and dense meshworks in fixed cells.
Measuring single molecules’ 3D orientations in addition to their 3D spatial localization is still today a challenge, due to the intrinsic coupling of both spatial and orientational parameters in the point spread function (PSF) image formation. We present polarized fluorescence microscopy methods able to report both orientational and spatial information from single molecules with high precision. These methods are applied to STORM and PALM nanoscale imaging of actin filaments organization and membrane proteins’ conformational changes in 3D.
Measuring 3D orientation properties of single fluorescent emitters including their angle wobbling, as well as their position, is a challenge that would enrich super-resolution techniques with structural molecular information. We present a polarized microscopy technique that provides all 3D orientation parameters unambiguously, using four-polarization splitting of the image plane and intensity filtering in the back focal plane. Using an inverse problem approach we can retrieve 3D orientation, wobbling and 2D position of the fluorophores with high precision. We validated the technique using fluorescent nano-beads and applied it to the structural study of fluorescently labelled F-actin filaments.
KEYWORDS: 3D image processing, Structural imaging, 3D metrology, Super resolution, Point spread functions, Molecules, Proteins, Stereoscopy, Microscopes, Polarization
Measuring single molecule 3D orientational behavior is a challenge that, if solved in addition to 3D localization, would provide key elements for super resolution structural imaging. Orientation contains indeed information on local conformational properties of proteins, while orientational fluctuations are signatures of local steric, charges or viscosity constraints. Both these properties are not perceptible in pure super resolution imaging, which relies on position localization measurements. Imaging 3D orientation together with 3D localization is however not easily accessible due to the intrinsic coupling between spatial deformation of the single molecules’ point spread function (PSF) and their off-plane orientations, as well as the requirement to measure six parameters which are not directly distinguishable (two angles of orientation, aperture of angular fluctuations, and three spatial position coordinates). In this work, we report a method that is capable of resolving these six parameters in a modality that is compatible with super resolution imaging. The method is based on the use of a stress-engineered spatially-variant birefringent phase plate placed in the Fourier plane of the microscope detection path. This modifies the PSF of single emitters in a way that can be non-ambiguously decomposed onto the nine 3D-analogs of the Stokes parameters. Moreover, the use of two complementary co/counter circular polarizations projections provides a non-ambiguous determination of the 3D spatial position of single emitters with tens of nanometers precision. This method, which opens to nanoscale structural imaging of proteins organization, is presented on model nano-beads emitters and applied to single fluorophores used for cytoskeleton labelling.
Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.