Proceedings Article | 13 November 2014
W. Bell, R. Bagley, S. Motew, P.-W. Young
KEYWORDS: Cryogenics, Control systems, Liquids, Fourier transforms, Control systems design, Cavitation, Nitrogen, Metals, Acoustics, Head
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. “Cutting corners” in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these “lessoned learned” are described in this paper.