Cervical Intraepithelial Neoplasia (CIN) is a precursor to invasive cervical cancer, which annually accounts for about 3700 deaths in the United States and about 274,000 worldwide. Early detection of CIN is important to reduce the fatalities due to cervical cancer. While the Pap smear is the most common screening procedure for CIN, it has been proven to have a low sensitivity, requiring multiple tests to confirm an abnormality and making its implementation impractical in resource-poor regions. Colposcopy and cervicography are two diagnostic procedures available to trained physicians for non-invasive detection of CIN. However, many regions suffer from lack of skilled personnel who can precisely diagnose the bio-markers due to CIN. Automatic detection of CIN deals with the precise, objective and non-invasive identification and isolation of these bio-markers, such as the Acetowhite (AW) region, mosaicism and punctations, due to CIN. In this paper, we study and compare three different approaches, based on Mathematical Morphology (MM), Deterministic Annealing (DA) and Gaussian Mixture Models (GMM), respectively, to segment the AW region of the cervix. The techniques are compared with respect to their complexity and execution times. The paper also presents an adaptive approach to detect and remove Specular Reflections (SR). Finally, algorithms based on MM and matched filtering are presented for the precise segmentation of mosaicism and punctations from AW regions containing the respective abnormalities.
Improving the quality of gray level images continues to be a challenging task, and the challenge increases for color images due to the interaction of multiple parameters within a scene. Each color plane or wavelength constitutes an image by itself, and its quality depends on many parameters such as absorption, reflectance or scattering of the object with the lighting source. Non-uniformity of the lighting, optics, electronics of the camera, and even the environment of the object are sources of degradation in the image. Therefore, segmentation and interpretation of the image may become very difficult if its quality is not enhanced. The main goal of the present work is to demonstrate image processing algorithm that is inspired from some concepts of the Human Visual System (HVS). HVS concepts have been widely used in gray level image enhancement and here we show how they can be successfully extended to color images. The resulting Multi-Scale Spatial Decomposition (MSSD) is employed to enhance the quality of color images. Of particular interest for medical imaging is the enhancement of retinal images whose quality is extremely sensitive to imaging artifacts. We show that our MSSD algorithm improves the readability and gradeability of retinal images and quantify such improvements using both subjective and objective metrics of image quality.
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.