Laser shock peening is an effective surface technology for improving the surface mechanical properties of metals. Many studies have been performed to process different kinds of metallic material that can induce compressive residual stress in the top layer of samples, which would extend the fatigue life of metal parts in the industry. The titanium alloy samples are treated by laser shock peening with water layer as constraint layer and without protective coating in this research, after which the titanium alloy samples are observed and analyzed with a scanning electron microscope, hardness tester, laser confocal microscope, and wear tester. The surface roughness, surface microstructure, and other properties of untreated and treated titanium alloy are compared to study the effect on titanium alloy of laser shock peening process without protective coating.
High strength steel has been used in the aviation industry and automotive body structural applications to reduce its mass through a reduction in thickness. Therefore, it is very important to enhance its mechanical property, such as microhardness. In the present research, the high strength steel samples were treated by laser shock peening (LSP) with different laser pulse energy and laser pulse width. The microhardness and residual stress were measured to compare the difference between laser energy of 3 J with 10 ns and 5 J with 20 ns. The results in the study show that the surface LSP treatment can increase the microhardness and the compressive residual stress can be found when the samples were tested by hole drilling testing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.