We have been developing ultra-lightweight Wolter type-I X-ray telescopes fabricated with MEMS technologies for GEO-X (GEOspace X-ray imager) which is a small satellite mission to perform soft X-ray imaging spectroscopy of the entire Earth’s magnetosphere. The telescope is our original type of micropore optics and possesses lightness (∼5 g), a short focal length (∼250 mm), and a wide field of view (∼5° × ∼5°). The MEMS X-ray telescope is made of 4-inch Si (111) wafers. The Si wafer is first processed by deep reactive ion etching, which has numerous curvilinear micropores (a 20-μm width) whose sidewalls are utilized as X-ray reflective mirrors. High-temperature hydrogen annealing and chemical mechanical polishing processes are applied to make those sidewalls smooth and flat enough to reflect X-rays. After that, the wafer is plastic-deformed into a spherical shape and Pt-coated by a plasma atomic layer deposition process to focus X-rays with high reflectivity. Finally, we assemble two optics bent with different curvatures (1000- and 333-mm radii) and complete the Wolter type-I telescope. We optimized each process and conducted an X-ray irradiation test to assemble the full-processed optics into an EM telescope for the GEO-X mission, which enabled to complete the telescope to achieve an angular resolution of ∼4.8 arcmin in FWHM in the assembled telescope. We report on our latest development status and the X-ray imaging performance of the GEO-X EM telescope.
GEO-X (GEOspace X-ray imager) is a small satellite mission to visualize the Earth’s magnetosphere through Solar Wind Charge eXchange (SWCX). SWCX is known as soft X-ray emissions generated by the charge exchange between highly charged-state heavy ions and neutral atoms in the Earth’s exosphere. The GEO-X satellite is aimed to be launched during the upcoming solar maximum around 2025-2027 and is planned to be injected to a low-latitude orbit which allows visualization of the magnetosphere from outside the magnetosphere. The satellite will carry a light-weight X-ray imaging spectrometer, dramatically improving the size and weight of those onboard past X-ray astronomy satellites.
GEOspace X-ray imager (GEO-X) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamic couplings between solar wind and the magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. X-ray astronomy satellite observations recently discovered soft X-ray emissions originating from the magnetosphere. We are developing GEO-X by integrating innovative technologies of a wide field of view (FOV) X-ray instrument and a small satellite for deep space exploration. The satellite combines a Cubesat and a hybrid kick motor, which can produce a large delta v to increase the altitude of the orbit to about 30 to 60 RE from a relatively low-altitude (e.g., geo transfer orbit) piggyback launch. GEO-X carries a wide FOV (5 × 5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3 to 2 keV) imaging spectrometer using a micro-machined X-ray telescope and a CMOS detector system combined with an optical blocking filter. We aim to launch the satellite around the solar maximum of solar cycle 25.
We have been developing an ultra-lightweight Wolter type-I X-ray telescope fabricated with micro electro mechanical systems (MEMS) technologies for GEO-X (GEOspace X-ray Imager) mission.
GEO-X will aim global imaging of the Earth's magnetosphere using X-rays.
The telescope is our original micropore optics which is light in weight (~5 g), compact with a short focal length (~250 mm), and has a wide field-of-view (~5 deg x 5 deg).
In this talk we show developed assembly processes to meet the requirements of the GEO-X mission and the telescope's X-ray imaging performance as an engineering model with this method.
We have been developing an ultra-lightweight Wolter type-I x-ray telescope fabricated with MEMS technologies for GEO-X (geospace x-ray imager) which is an 18U CubeSat (∼20 kg) to perform soft x-ray imaging spectroscopy of the entire Earth’s magnetosphere from Earth orbit near the moon. The telescope is our original micropore optics which possesses lightness (∼15 g), a short focal length (∼250 mm), and a wide field of view (∼5 ◦ × ∼5 ◦ ). The MEMS x-ray telescope is made of 4-inch Si (111) wafers. The Si wafer is firstly processed by deep reactive ion etching such that they have numerous curvilinear micropores (20-µm width) whose sidewalls are utilized as X-ray reflective mirrors. High-temperature hydrogen annealing and chemical mechanical polishing processes are then applied to make those sidewalls smooth and flat enough to reflect X-rays. After that, the wafer is plastic-deformed into a spherical shape and Pt-coated by plasma atomic layer deposition (ALD) process to focus x-rays with high reflectivity. Finally, we assemble two optics bent with different curvatures (1000- and 333-mm radius) into the Wolter type-I telescope. Optimizing the annealing and polishing processes, we found that the optic achieves an angular resolution of ∼5.4 arcmins in HPW. This is comparable with the requirement for GEO-X (∼5 arcmins in HPD at single reflection). Our optic was also successfully Pt-coated by a plasma-enhanced ALD process to enhance x-ray reflectivity. Moreover, we fabricated an STM telescope and confirmed its environmental tolerances by conducting an acoustic test with the H-IIA rocket qualification test level and a radiation tolerance test with a 100 MeV proton beam for 30 krad equivalent to a 3-year duration in the GEO-X orbit.
GEO-X (GEOspace X-ray imager) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamical couplings between solar wind and magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. In recent years, X-ray astronomy satellite observations discovered soft X-ray emission originated from the magnetosphere. We therefore develop GEO-X by integrating innovative technologies of the wide FOV X-ray instrument and the microsatellite technology for deep space exploration. GEO-X is a 50 kg class microsatellite carrying a novel compact X-ray imaging spectrometer payload. The microsatellite having a large delta v (<700 m/s) to increase an altitude at 40-60 RE from relatively lowaltitude (e.g., Geo Transfer Orbit) piggyback launch is necessary. We thus combine a 18U Cubesat with the hybrid kick motor composed of liquid N2O and polyethylene. We also develop a wide FOV (5×5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3-2 keV) imager. We utilize a micromachined X-ray telescope, and a CMOS detector system with an optical blocking filter. We aim to launch the satellite around the 25th solar maximum.
GEO-X (GEOspace X-ray imager) is a 50 kg-class small satellite to image the global Earth’s magnetosphere in X-rays via solar wind charge exchange emission. A 12U CubeSat will be injected into an elliptical orbit with an apogee distance of ∼40 Earth radii. In order to observe the diffuse soft X-ray emission in 0.3-2 keV and to verify X-ray imaging of the dayside structures of the magnetosphere such as cusps, magnetosheaths and magnetopauses which are identified statistically by in-situ satellite observations, an original light-weight X-ray imaging spectrometer (∼10 kg, ∼10 W, ∼10×10×30 cm) will be carried. The payload is composed of a ultra light-weight MEMS Wolter type-I telescope (∼4×4 deg2 FOV, <10 arcmin resolution) and a high speed CMOS sensor with a thin optical blocking filter (∼2×2 cm2 , frame rate ∼20 ms, energy resolution <80 eV FWHM at 0.6 keV). An aimed launch year is 2023-25 corresponding to the 25th solar maximum.
Antireflection (AR) layers at the tips of optical fibers are indispensable in order to reduce propagation loss and optical
noise. Conventional thin-film AR layers have problems about cost due to vacuum apparatus usage in the fabrication and
requirement of many thin-film layers to obtain excellent AR characteristics. Thus, easy AR coating methods are needed
to reduce Fresnel reflection. AR structures consisting of subwavelength gratings (SWGs), which have periodic structures
with the periods smaller than operating wavelengths, have been extensively investigated. Desired refractive index to
realize the ideal AR condition can be obtained by SWGs. Nano imprint lithography (NIL) is known as the low cost
fabrication technology of SWGs. However, it is difficult to carry out an NIL process on the tips of flexible and long
optical fibers. In this study, we developed a dedicated UV-NIL system for optical fiber end-faces. An SWG with a period
of 700 nm, a width of 560 nm, and a height of 250 nm was successfully fabricated at the tip of a single-mode optical
fiber for optical communications system. We evaluated that reflectance decreased by using the SWG over measured
spectral range. For example, reflectance decreased to 0.2% at a wavelength of 1550 nm.
Metamaterials are artificial structures with exotic electromagnetic response: negative refraction, sub-wavelength
focusing, and so on. Although characteristics of metamaterials are almost determined by unit cell structure, coupling
effects among unit cells also have an important role in engineering electromagnetic response of metamaterials. In this
study, we investigated Q-factors of Fano resonance in optical metamaterials having alternate arrangement of inversed
asymmetric double bars (ADBs) to study effects of neighboring unit cell. An ADB is a pair of metal bars with slightly
different bar lengths. Fano resonance with a high Q-factor was excited because of small asymmetry of an ADB.
Alternate arrangement of inversed unit cells, in which the positions of the long bar and the short bar in neighboring unit
cells were interchanged each other, was introduced into ADB metamaterials and its effect on the Q-factor was
investigated. ADB metamaterials were fabricated by a lift-off method and optical spectra were measured. The Q-factors
of Fano resonance around a wavelength of 1500 nm were estimated from absorption peaks, and dependence of a degree
of asymmetry was studied. The Q-factor had strong dependence of asymmetry. Moreover, the Q-factors for alternate
arrangement of inversed unit cells were higher than that for normally periodic arrangement. The enhancement is
qualitatively expressed by interaction of magnetic dipoles among neighboring unit cells.
Our development of ultra light-weight X-ray micro pore optics based on MEMS (Micro Electro Mechanical System)
technologies is described. Using dry etching or X-ray lithography and electroplating, curvilinear sidewalls
through a flat wafer are fabricated. Sidewalls vertical to the wafer surface are smoothed by use of high temperature
annealing and/or magnetic field assisted finishing to work as X-ray mirrors. The wafer is then deformed to
a spherical shape. When two spherical wafers with different radii of curvature are stacked, the combined system
will be an approximated Wolter type-I telescope. This method in principle allows high angular resolution and
ultra light-weight X-ray micro pore optics. In this paper, performance of a single-stage optic, coating of a heavy
metal on sidewalls with atomic layer deposition, and assembly of a Wolter type-I telescope are reported.
Microelectromechanical systems (MEMS) micropore X-ray optics were proposed as an ultralightweight, high-
resolution, and low cost X-ray focusing optic alternative to the large, heavy and expensive optic systems in
use today. The optic's monolithic design which includes high-aspect-ratio curvilinear micropores with minimal
sidewall roughness is challenging to fabricate. When made by either deep reactive ion etching or X-ray LIGA, the
micropore sidewalls (re
ecting surfaces) exhibit unacceptably high surface roughness. A magnetic eld-assisted
nishing (MAF) process was proposed to reduce the micropore sidewall roughness of MEMS micropore optics
and improvements in roughness have been reported. At this point, the best surface roughness achieved is 3
nm Rq on nickel optics and 0.2 nm Rq on silicon optics. These improvements bring MEMS micropore optics
closer to their realization as functional X-ray optics. This paper details the manufacturing and post-processing
of MEMS micropore X-ray optics including results of recent polishing experiments with MAF.
We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems)
technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and
succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can
be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must
approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of
arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently
developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid
assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report
on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two
types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors
were detected in the angular response measurements. Compared to model calculations, surface roughness of the
silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.
We propose a tunable micro-laser using a guided mode resonant grating (GMRG). The GMRG is used for both cavity and periodic gain medium. In order to realize the proposed device, first, the passive GMRG suitable for the wavelength filtering was investigated. Rigorous coupled wave analysis (RCWA) was used to design the grating. We found that the resonant reflection was obtained even in such structure that a single grating layer was suspended in the air. For tuning the wavelength of the GMRG, we propose the grating combined with a MEMS actuator. The GMRG combined with an electrostatic comb actuator was fabricated from SOI (silicon on insulator) wafer by Si micromachining. The period of the Si grating was varied form 600nm to 700nm. The peak of the reflectance shifted with the increase of the period in the visible and infrared region. In order to install the periodic gain structure in the Si MEMS, a monolithic fabrication of GaN device on Si substrate is studied. The GaN is a powerful material for the active optical devices in visible (especially blue) region. We studied the growth of GaN film on Si substrate using molecular beam epitaxy (MBE). Some basic characteristics of the GaN film grown on Si substrate were measured and analyzed. Furthermore, the self-suspended gratings with the periods around 500nm were fabricated form the GaN film grown on Si substrate.
We report on a fabrication technique of both soft nanoimprint stamps and sub-wavelength gratings (SWGs) by spin coating of a polymer solution on a silicon mold. One and two-dimensional grating structures of periods 200nm were first obtained by high-resolution electron beam lithography and reactive ion etching of a silicon wafer. Then, a solution of polymethyl methacrylate (PMMA) was spun coated on the etched silicon molds. After baking, a thin layer of polydimethylsiloxane (PDMS) was assembled with PMMA sheet and mounted on a glass carrier. Scanning electron microscopy images of the replicated samples show high quality features reproduced from the silicon mold. Since PMMA is transparent for visible and near-infrared wavelengths, the replicated subwavelength gratings are applicable for many kinds of optical devices. In addition, the fabricated structure can be used as soft nanoimprint stamps which provides clear advantages of large surface patterning. The optical properties of both two and one-dimensional SWGs have been studied theoretically based on rigorous coupled-wave analysis (RCWA). The measured transmittance of the replicated antireflection SWG agreed well with the theoretical calculations.
We developed a UV assisted soft nanoimprint lithography (UV-SNIL) that can be applied for the reproduction of nanometer features over large areas. Based on a simple argument deduced from the Navier-Stokes equation, we suggest several solutions to enhance the imprinting process ability. One of the solutions is to use tri-layer soft stamps, which consists of a rigid carrier, a low Young's module buffer and a top layer supporting nanostructure patterns to be replicated. Typically, the buffer and the top layer are made of polydimethylsiloxane (PDMS) of 5 mm thickness and polymethylmetacrylate (PMMA) of 10-50 μm thickness respectively. Patterning of the stamp top layer can be done in three different ways, i.e., spin coating, nano-compression and direct writing, all resulting in 100 nm features over a large wafer area. Another solution is to use a bilayer resist system for which imprinting is performed on the top layer while the final pattern is obtained by transferring the top layer image into the bottom layer by reactive ion etching. Comparing to other imprint techniques, UV-SNIL works at room temperature and low pressure, which is applicable for a wafer-scale replication at high throughput. For the research purpose, we also demonstrate nanostructure fabrication by lift-off techniques.
KEYWORDS: Near field scanning optical microscopy, Silicon, Optical components, Optical storage, Near field optics, Particles, Near field, Waveguides, Actuators, Silica
Data-storage using near-field optical microscopy is a promising technology for the breakthrough of high-density optical disk memory since wavelength limit of conventional lens-optics is not applied. We have proposed a MEMS for the near-field optical data storage, which consists of integrated optical micro-probes and a micro media-translation-table. Three-dimensional lithography based on the bulk micromachining using resist spray coater is applied to the integration of waveguide, micro-pinhole tip, cantilever, and photodiode for the MEMS probes. The media-translation-table consists of the inverted scratch drive actuators (inverted SDAs) fabricated by surface micromachining.
We fabricated a two-dimensional subwavelength grating (SWG) on a gallium aluminum arsenide (GaAIAs) double power double hetero (DDH) junction structure. The GaAIAs DDH structure functions as a photodiode (PD). The fabricated grating had 200 nm period and the tapered grating shape with aspect ratio of 1 .38 to prevent reflection in the visible and near-infrared spectral regions. The SWG was patterned by electron beam lithography and etched by a fast atom beam (FAB) with Cl2 and SF6. The novel etching technique using the two kinds of process gas of the FAB for fabricating the tapered grating with high aspect ratio was proposed. The reflectivity was examined at wavelengths from 400 nm to 800 nm. The reflectivity of the SWG was less than 1.0% at wavelengths from 400 nm to 780 nm. For example, at wavelengths of 440 nm and 780 nm, both reflectivities of the SWG decreased to 0.02% from 45.31% and 38. 1% of the flat surface, respectively. The theoretical calculations of the reflectivity were carried out by using rigorous coupled-wave analysis. The calculated reflectivity agreed well with the measured results. The I-V characteristics of the PD were measured by using laser diode light. The open-circuit voltage, short-circuit current and total conversion efficiency were improved by fabricating the SWG.
KEYWORDS: Electrodes, Near field, Near field scanning optical microscopy, Photomicroscopy, Data storage, Etching, Near field optics, Head, Silicon, Low pressure chemical vapor deposition
We proposed a micro-translation-table to convey a recording medium to a near-field optical head. The microtranslation- table consisted of inverted scratch-drive-actuators (SDAs) actuated by electrostatic force. The microtranslation- table was fabricated on a silicon substrate with surface micromachining technology. The SDAs were arrayed in the same direction. An object was translated by mounting the object on the inverted SDA array. Each SDA can be operated with the step resolution of 1 nanometer order. Therefore, the SDA array is precise as well as powerful. We observed that a micro object was translated in the designed direction with the fabricated SDAs by applying AC voltage of ±600 V at 100Hz. The size of the SDA plate was 70 µm long, 70 µm wide, 1.3µm thick and with the bushing of 1 .5 µm high. We proposed a novel mechanism releasing the SDAs from the object by retracting them. Therefore, the X-Y translation is possible by placing the inverted SDAs in four different directions. When the SDA was retracted, the vertical displacement of the SDA plate was measured.
We fabricated 2D subwavelength structured (SWS) surface on crystal silicon and SiO2 substrates. The SWS surface patterns were generated by electron beam lithography and etched by SF6 fast atom beam. In the case of the silicon SWS surface with the period of 150nm, the grating had conical profile and the groove was approximately 350nm deep. The reflectivity was examined at the wavelengths between 200nm and 2500nm. At 400nm, the reflectivity decreased to 0.5 percent from 54.7 percent of the silicon substrate. The reflectivity was also examined for the incident angel with He-Ne laser light. Thus, it was shown that the silicon SWS surface prevented the reflection in the wide ranges of wavelength and incident angle. We also fabricated the hole type SWS surface and the column type SWS surface on silicon substrates. In both types, the grating period was 200nm and the grooves were approximately 275nm deep. Moreover, the SiO2 SWS surface with the period of 150nm was fabricated and the reflectivity was examined at the wavelengths between 200nm and 2500nm.
Subwavelength structured (SWS) surface directly patterned on a substrate performs as antireflection surface. We fabricated the two-dimensional SWS surfaces on crystal silicon substrates and tested the reflection properties for visible and infrared wavelengths. The SWS surfaces were patterned by electron beam lithography and etched by SF6 fast atom beam (FAB). In this work, the FAB process was first applied to fabricate the SWS surface. We fabricated the hole type SWS surface and the column type SWS surface. In both types, the grating period was 200 nm and the grooves were approximately 275 nm deep. The dependence of the reflectivity on the free-space wavelength between 200 nm and 2500 nm was examined. In addition, dependence of the reflectivity on the incident angle was examined with He-Ne laser light. From those experimental results, it was shown that the fabricated SWS surfaces, especially column type SWS surface, prevented the reflection in the wide ranges of wavelength (200 nm less than (lambda) 0 less than 2500 nm) and incident angle (5 degrees less than (theta) less than 60 degrees).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.