THz photonics-based sources are attractive as they offer room-temperature solutions that rely on mature photonics technology and provide broadband tunability and large modulation bandwidth to address specific THz applications such as high-data-rate communications or spectroscopy. We will present an overview of our recent results on coherent and structured light emitted from III-V semiconductor lasers and we will focus on THz generation based on these original near-infrared lasers operating at 1064 nm. Vertical external-cavity surface-emitting lasers that exploit parity symmetry breaking together with integrated meta-surfaces can generate unconventional light states such as vortex light, spatially modeless laser, transverse multiplexing, non-linear structured light... Coherent THz emission has been obtained from a dual-mode laser, that operates simultaneously on two Laguerre-Gauss transverse modes, using either uni-traveling-carrier photodiodes and plasmonic photo-conductive antennas. We will discuss the ongoing work towards multiplex structured coherent photonic sources that offer high potential for powerful THz emission.
The use of photo-mixing techniques for THz emission offers attractive performances such as tunability and modulation bandwidth, that are suitable for bio-medical sensing and imaging, communications, or security. We will present the state-of-the-art performances of a vertical-external-cavity surface-emitting laser that operates on two transverse modes to ensure a stable continuous-wave and coherent (longitudinal, transverse and polarization) dual-frequency operation. THz emission is subsequently obtained by excitation of an uni-traveling-carrier photodiode (UTC-PD). The stability of the dual-frequency operation is achieved thanks to different types of functionalized surfaces involving the micro-fabrication of integrated III-V absorbing metallic masks or metamaterial phase masks by e-beam lithography. These functionalized surfaces allow to shape the optical and THz performances in terms of power, tunability and coherence. The latter will be specifically detailed in terms of longitudinal coherence, showing a THz frequency noise that is orders of magnitude lower than the optical one thanks to a significant correlation of technical noise. Tunable emission will be demonstrated from 50 GHz up to few THz with a linewidth of 150 kHz (during 3-ms), for a power of 1 W at 260 GHz that is limited by the UTC-PD for an optical excitation at 1064 nm at room temperature. We will discuss on the possibility to improve such a power significantly by taking advantage of the involved high-order transverse mode, offering possible intrinsically coherent networks of photo-emitters, thus paving the way to compact and agile coherent THz sources offering an output power over few mWs at frequencies of 100s of GHz.
The use of photo-mixing techniques for THz emission offers attractive performances such as tunability and modulation bandwidth, that are suitable for bio-medical sensing and imaging, communications, or security. We will present the state-of-the-art performances of a vertical-external-cavity surface-emitting laser that operates on two transverse modes to ensure a stable continuous-wave and coherent (longitudinal, transverse and polarization) dual-frequency operation. THz emission is subsequently obtained by excitation of an uni-traveling-carrier photodiode (UTC-PD). The stability of the dual-frequency operation is achieved thanks to different types of functionalized surfaces involving the micro-fabrication of integrated III-V absorbing metallic masks or metamaterial phase masks by e-beam lithography. These functionalized surfaces allow to shape the optical and THz performances in terms of power, tunability and coherence. The latter will be specifically detailed in terms of longitudinal coherence, showing a THz frequency noise that is orders of magnitude lower than the optical one thanks to a significant correlation of technical noise. Tunable emission will be demonstrated from 50 GHz up to few THz with a linewidth of 150 kHz (during 3-ms), for a power of 1 W at 260 GHz that is limited by the UTC-PD for an optical excitation at 1064 nm at room temperature. We will discuss on the possibility to improve such a power significantly by taking advantage of the involved high-order transverse mode, offering possible intrinsically coherent networks of photo-emitters, thus paving the way to compact and agile coherent THz sources offering an output power over few mWs at frequencies of 100s of GHz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.