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Abstract. Many technologies, including dot projectors and lidar systems, benefit greatly from using polarized
illumination. However, conventional polarizers and polarizing beam splitters have a fundamental limit of 50%
efficiency when converting unpolarized light into one specific polarization. Here, we overcome this restriction
and achieve near-complete conversion of unpolarized light to a spatially uniform polarization state over several
output directions with our topology-optimized metasurfaces. Our results provide a path toward greatly improv-
ing the efficiency of common unpolarized light sources, such as LEDs, for a variety of applications requiring
uniformly polarized illumination. Our fabricated metasurface realizes a 70% conversion efficiency, surpassing
the aforementioned limit, and achieves a polarization extinction ratio exceeding 20, when characterized with
laboratory measurements. We further demonstrate that arbitrary power splitting can be achieved between
three or more polarized outputs, offering flexibility in target illumination.
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1 Introduction
Polarization is a fundamental property of light that can carry and
probe information with a wide range of applications including
imaging,1–3 sensing,4,5 and communications,6,7 which often ben-
efit from having a predefined pure polarization state as the input
or output. For example, structured dot-array patterns for depth
imaging combined with polarized illumination and detection
allow one to distinguish between specular and diffuse reflec-
tions,8 where highly polarized laser arrays are required.
Remarkably, our approach can enable such schemes to effi-
ciently operate using unpolarized sources, such as LEDs, com-
bined with specially designed metasurfaces that convert greater
than 80% of all unpolarized light to a particular polarization

across multiple dot-array outputs, enabling broader penetration
of advanced imaging technologies in end-user devices.

Whereas lasers with a polarized output are available, the
cheaper and more ubiquitous sources such as LEDs usually emit
unpolarized or partially polarized light. Efficient extraction of
fully polarized light from such sources remains a challenging
problem.9–11 The traditional approach is to filter out the un-
desired orthogonal state with a linear polarizer, sometimes in
combination with wave plates if the target polarization is ellip-
tical or circular.12 This process is energy inefficient, since there
is a 50% limit for conversion of unpolarized to fully polarized
light with conventional polarizers.13 If this limit were to be sur-
passed in a compact form factor, greater flexibility would be
achieved in optical devices for various applications requiring
uniformly polarized illumination simultaneously in multiple
spatial directions.

In the last decade, there have been great advances in shaping
polarization states of light with optical metasurfaces, composed
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of a planar array of nanostructures with subwavelength thick-
nesses.14–20 A single metasurface can enable arbitrary polariza-
tion conversion and dichroism to realize the functions of wave
plates and polarizers.21–24 Metasurface holograms that combine
different polarizing meta-atoms into an array can be used as a
polarimeter by projecting different states into spatially distinct
regions.25–28 In addition, recent work has demonstrated the abil-
ity to control the degree of polarization with a metasurface by
filtering unpolarized incident light to arbitrary partially or fully
polarized output.29 However, all of these pillar-based metasur-
faces are still fundamentally limited to the 50% conversion
efficiency when polarizing unpolarized light. We discuss the
reasoning for this limitation in Sec. 2.2. Metasurfaces have also
replicated and extended the functionality of a conventional po-
larizing beam splitter (PBS)28,30–34 by splitting incoming light
into multiple pairs of orthogonally polarized beams, as illus-
trated on a Poincaré sphere in Fig. 1(a). The PBS is an energy-
efficient approach, directing orthogonal linear polarizations into
separate paths. Though the total transmitted power is conserved,

the resulting beams are, however, not of the same polarization.
To obtain the desired spatially uniform polarization, additional
wave plates are required. This additional bulk and complexity
would be incompatible with compact end-user devices requiring
integrated optical solutions.

In this work, we reveal, for the first time to our knowledge,
the ultimate efficiency and flexibility in converting an unpolar-
ized input state to a spatially uniform output polarization state.
This is achieved through specially designed elements with
multiple output channels, thus overcoming the efficiency limit
of a single-output polarizer [Fig. 1(b)]. We implement this prin-
ciple by inversely designing metasurfaces with two, three, and
four outputs. Each can convert unpolarized light into a single
predefined output polarization state with combined efficiency
far exceeding the 50% threshold, such that the polarization state
is spatially uniform across all the output directions. In experi-
ments, we demonstrate the dual-output metasurface polarizer,
with the measured efficiency reaching 70%, thus demonstrating
the practical feasibility of our concept. These fundamental

(a) (b)

(c) (d)

,,,

Fig. 1 Output polarization states shown on a Poincaré sphere for (a) previously realized meta-
surfaces that split polarizations into pairwise orthogonal states between different outputs
(1 and 4, 2 and 3) and (b) the proposed metasurface, which achieves spatially uniform polarization
across several outputs. (c) A schematic depicting a metasurface which converts an unpolarized
input into N outputs with identical polarization states jψi. (d) The permissible transmitted power of
an ideal polarizer for a different number of outputs. The red markers show the allowed transmis-
sion of individual output channels, and the blue markers show the maximum total transmission
of all output channels.
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advances in polarization optics can improve the energy effi-
ciency of many optical technologies employing unpolarized
or partially polarized light sources.

2 Method

2.1 Deriving Fundamental Limits to Conversion
Efficiency

We first formulate the general properties of any passive linear
optical device with N total outputs, where an unpolarized light
source is coupled to a single input port [Fig. 1(c)]. For maxi-
mum conversion efficiency of unpolarized to polarized light,
we aim to fully transmit all input power across the outputs.
Each output has a predefined target pure polarization state
jψ1,2;…;Ni. Mathematically, this transformation to an arbitrary
output state jψni of the nth output can be defined by a Jones
matrix,

Jn ¼ Anjψnihϕnj: (1)

The input state jϕni is optimized to maximize the transmis-
sion efficiency, and An are real-valued transmission amplitudes
that are bounded for passive devices as 0 ≤ An ≤ 1. An input
unpolarized light source can be represented as a mixed state with
the density matrix

ρin ¼
1

2
ðjHihHj þ jVihVjÞ: (2)

The corresponding power transmission to each output is then
Punpol;n ¼ 0.5jAnj2, meaning that the maximum conversion ef-
ficiency for each output is 50% [red marker in Fig. 1(d)]. The
total power efficiency is Punpol;total ¼ 0.5

P
N
n¼1 jAnj2, which

should be no more than unity for passive devices. Then, the gen-
eral research question becomes: can we find a set of input states
jϕ1,2;…;Ni such that Punpol;total ¼ 1 for any given set of output
states jψ1,2;…;Ni and arbitrary power splitting portions.

We find that full power efficiency can be achieved for N ≥ 2,
as shown by the blue markers in Fig. 1(d) and in Sec. S1 in the
Supplementary Material.35 ForN ¼ 2, the power transmission to
each of the two outputs is exactly 50%, meaning that there is no
flexibility in the power splitting when realizing 100% total ef-
ficiency. Nevertheless, in this scenario, there is still an arbitrary
choice of the pure output polarization states, including having
the same output polarization. In comparison, previous bulky op-
tics and metasurface-based PBSs have never explored the full
potential of a dual-output polarizer.

For three or more outputs, 100% total efficiency can be
achieved with arbitrary output states and any power splitting
portions, only subject to a condition that each output has a maxi-
mum of 50% power, as marked by the red shading in Fig. 1(d).
After defining the output states and power splitting portions,
analytical forms of the right singular states jϕ1,2;3i can be ob-
tained for three outputs, which are derived in Sec. S1.3 in the
Supplementary Material.35 For N ≥ 4 output ports, there are
nonunique solutions, since the number of allowed free param-
eters oversatisfy the necessary conditions. We present a particu-
lar analytical solution in Sec. S1.4 in the Supplementary
Material.35 We emphasize that this is a general result; a passive
optical device with N ≥ 2 ports may have 100% total efficiency
in achieving arbitrary output polarization states. In addition, a

device with N ≥ 3 ports may also have arbitrary power-splitting
portions at the outputs, provided that no single port contributes
more than 50% to the total efficiency. Replicating the function-
ality of this device with a conventional optical system would
require a series of multiple PBSs, wave plates, and other bulky
optical elements (Sec. S2 in the Supplementary Material35).

2.2 Topology Optimization

We illustrate a particular case of polarization conversion by de-
signing metagratings that split an incoming unpolarized beam
into multiple diffraction orders, all having identical output-pure
polarizations jψ1,2;…;Ni ¼ jψi. This operational functionality
achieves spatially uniform polarization that can be beneficial
for structured illumination applications.36 Dielectric metasurfa-
ces are commonly and successfully designed in the framework
of weakly interacting uncoupled resonators,28,37–40 where the
output fields are determined by the superposition of position-
dependent transfer matrices. However, we find that this type
of metasurface construction does not enable our desired
functionality. Specifically, according to Eq. (6) in Ref. 28
Jn ¼ Anjϕ�

nihϕnj, conventional nonchiral pillar-based metasur-
faces are restricted to the target Jones matrices with
jψni ¼ jϕ�

ni. It means that for identical output pure polarizations
jψni ¼ jψi, one necessarily has jϕni ¼ jψ�i. This device would
filter out one input polarization component with the same output
efficiency limit of 50% as a conventional polarizer.

We overcome this apparent roadblock by designing dielectric
metasurfaces with a spatially nonlocal response, where the
polarization transformations depend on the diffraction order.
For this purpose, we perform inverse design with free-form
topology optimization41–44 by adopting the MetaNet codebase45

in combination with RETICOLO rigorously coupled wave
analysis.46 Our figure of merit (FOM) is formulated as the differ-
ence between the transmitted target and undesired orthogonal
polarization intensities, multiplied over all output diffraction
orders,

FOM ¼
Y

n

ðjhψ jJnj2 − jhψ⊥jJnj2Þ; (3)

where jψi is the desired output polarization state for all dif-
fraction orders, and jψ⊥i is an undesired orthogonal state
(hψ jψ⊥i ¼ 0). By overlapping the electric fields of forward
and adjoint simulations, the material derivative of the FOM
is determined. The gradient information is then used as part
of a gradient descent algorithm to progress the material distri-
bution of the metasurface to an optimal point. Exact expressions
for the derivative of the FOM are given in Sec. S3 in the
Supplementary Material.35

3 Results and Discussion

3.1 Simulation Results

In the first design, we target the splitting of an incoming unpo-
larized beam into two outgoing beams (N ¼ 2) with the same
diagonal linear polarization jDi. This can be achieved with an
angled incidence of the input beam such that only two diffrac-
tion orders exist in the transmission direction [Fig. 2(a)]. We
design the metasurface for equal transmitted diffraction effi-
ciency into the m ¼ 0 and m ¼ 1 orders [Fig. 2(b)]. The inci-
dent angle is α ¼ 45 deg for the unpolarized input light. An
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oblique angle of incidence is chosen for a first demonstration,
which simplifies the optimization by eliminating unwanted
higher-order diffraction orders. With 45 deg, the two diffraction
channels are reasonably separated spatially to individually mea-
sure in an experimental setup.

We run the topology optimization starting with a random dis-
tribution of refractive indices in the unit cell. The design is based
on a silicon layer (n ¼ 3.48 at λ ¼ 1550 nm) with a thickness
of 1000 nm on a 460 μm sapphire substrate (n ¼ 1.75 at
λ ¼ 1550 nm), corresponding to our physical sample. The algo-
rithm also incorporates binarization of the perturbation region to
either silicon or air with a constraint on minimum feature size.47

The optimized complex shape of the nanoresonator is shown in
Fig. 2(c). Due to its asymmetric shape, the localized fields in-
duced in the resonator are highly nontrivial. For example, when
the incident light is polarized in the X-direction (jHi polariza-
tion) [Fig. 2(d)], most of the field is concentrated on the right tip
of the nanoresonator. However, when incident light is polarized
in the Y-direction (jVi polarization) [Fig. 2(e)], the light is in-
stead concentrated along the left arm of the nanoresonator.
Therefore, the action of the metasurface on unpolarized light
is defined through a complex superposition of induced fields
in the nanoresonator.

The modeling predicts highly efficient conversion of unpo-
larized light to the target diagonal state jDi at both outputs
[Fig. 2(f)]. The combined total efficiency is beyond 80% over
an extended wavelength range of 1520 to 1570 nm. Importantly,
this performance fundamentally exceeds the 50% limit of

conventional polarizers, with a combined extinction ratio that
approaches 100 at 1550 nm [Fig. 2(g)].

While the resulting optimized metasurface geometry delivers
the required polarization transmission performance, the under-
lying mechanism of its operation, and the interplay between
local and nonlocal modes, may not be intuitively obvious.
We employ the singular value decompositions of the scattering
matrix to elucidate the mechanism with which polarizations
are split and rotated for different outputs (Sec. S4 in the
Supplementary Material35). Then, to obtain physical insight,
we perform multipolar decomposition48 to identify the predomi-
nant local modes of the metasurface under different polariza-
tions (Sec. S5 in the Supplementary Material35). We find that
electric and magnetic dipole modes provide the strongest scat-
tering and polarization-filtering response. At the same time, the
metasurface has a nonlocal characteristic allowing for the non-
trivial dependence of transmission on the diffraction orders be-
yond the limits of local metasurfaces, as discussed above. We
provide performance comparisons to previously demonstrated
metasurface polarizers and commercially available polarizers
in Sec. S6 in the Supplementary Material (see also Refs. 49–
51 therein). The metasurface maintains effective performance
greater than the threshold 50% efficiency over the entire inci-
dent angle (α) range from 40 deg to 80 deg. Peak conversion
efficiency of ∼80% is reached at around 50 deg incidence,
which is shown in Sec. S7 in the Supplementary Material.35

While this work focuses on optimization of metasurfaces that
are amenable to current planar silicon fabrication platforms,

Fig. 2 (a) Illustration of the dual-output polarizing metasurface. (b) Operating scheme of the meta-
surface in transmission, with an incident angle of α ¼ 45 deg and first-order diffraction angle of
β ¼ 68 deg. (c) Final metasurface design of the single unit cell, with a period 950 nm along both
directions. The shaded region represents silicon, and the void represents air. (d) Electric field in-
tensity enhancement for incident jHi polarization, and (e) jV i polarization. These have the same
unit cell dimensions as (c). (f) Predicted transmitted power, and (g) extinction ratio of the diagonal
linear polarization for each diffraction order.
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new manufacturing processes in the near future may open up
greater possibilities. The total efficiency can likely be increased
beyond 90% with multilayer metasurfaces or volumetric meta-
materials, which were shown to enhance performance in devices
for different applications.52–55

3.2 Experimental Results

We successfully fabricate the optimized design using e-beam
lithography and standard silicon etching, as shown in Figs. 3(a)
and 3(b). The characterization of the metasurface was then per-
formed in free space, where we measured the m ¼ 0 and m ¼ 1
diffraction orders, as illustrated in Fig. 3(c). The experiments
were performed with the horizontal and vertical input polariza-
tion states in two separate measurements, mimicking the unpo-
larized incident light according to Eq. (2); see Sec. S8 in the
Supplementary Material35 for further details. These states were
prepared from a continuous-wave tunable laser, operating in the
near-infrared within the telecommunications band wavelengths
of 1500 to 1575 nm. Calibration measurements against air,
described in Sec. S9 in the Supplementary Material,35 are taken
to determine the variation in input power across all relevant
wavelengths. These values are then used to calculate the abso-
lute metasurface transmission efficiency.

We experimentally demonstrate the metasurface’s ability to
convert unpolarized light to diagonal polarized light with an
absolute efficiency close to ∼70% [Fig. 3(d)], exceeding the
50% limit of previous approaches. This performance is main-
tained across a broad wavelength range, from 1540 to 1570 nm.
The extinction ratio of desired to undesired output polarization
states exceeds 20 at the target wavelength of 1550 nm, see
Fig. 3(e). We discuss the fabrication performance tolerances
for our metasurface in Sec. S11 in the Supplementary Material.35

For another demonstration, we optimize for and experimen-
tally characterize a two-output circular polarizer; see Sec. S10 in
the Supplementary Material.35 The metasurface is able to realize

Fig. 3 (a) Top-down and (b) tilted SEM images of the fabricated metasurface. (c) Simplified ex-
perimental setup. The source transmits through the metasurface, which diffracts the beam into two
orders. Each arm analyses the diagonal polarization before reaching the detector. (d) Measured
transmitted power, and (e) extinction ratio of the diagonal polarization for each diffraction order for
an incident angle α ¼ 45 deg.

Fig. 4 (a) Operating principle of a three-output metasurface
polarizer. The incident beam is normal, and α ¼ 75 deg.
(b) The binarized metasurface pattern, with shaded regions rep-
resenting silicon and the void representing air. (c) Transmittance
of desired vertical polarization versus wavelength. (d) Extinction
ratio of combined vertical to horizontal polarization.
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conversion of unpolarized light into circularly polarized light
with approximately 60% efficiency, thereby exceeding the 50%
limit.

3.3 Designs for Three and More Outputs

We then extend our method to design metasurfaces that generate
three or more outputs. As discussed above and visualized in
Fig. 1(d), there is freedom in the distribution of output powers
for more than two diffraction orders. We present a metasurface
with nonequal power splitting portions for each of the three out-
puts [Fig. 4(a)], with the optimized design shown in Fig. 4(b).
The unit cell is chosen to be 1600 nm by 800 nm. The reason for
the rectangular unit cell is to avoid diffraction in air along the y
direction, while only allowing first-order diffraction in the x di-
rection. In this configuration, the zeroth order is normal to the
plane of the metasurface. This three-output design realizes high
combined transmittance of over 80% to the target vertical linear
polarization jVi, and an extinction ratio over jHi output ap-
proaching 40 at 1550 nm [Figs. 4(c) and 4(d)]. Moreover, in
Sec. S12 in the Supplementary Material,35 we show a nontrivial
metasurface design where incoming unpolarized light is split
into four outputs with the same polarization while achieving
similar performance.

It is instructive to discuss a question on whether it is possible
to recombine the multiple output beams into one. Fundamentally,
for two-output splitting, the beams are mutually incoherent and
cannot be recombined coherently with any passive device.
However, for three of more outputs, the beams can be partially
spatially coherent. There is potential in future work to explore
different beam recombination schemes and utilize them for
further tailoring different structured light and dot projection
schemes.

4 Conclusion
We anticipate that metasurfaces facilitating highly efficient
shaping of unpolarized light into uniformly polarized outputs
will find various applications, including polarized imaging with
basic unpolarized sources from LED and multimode lasers. Our
multi-output devices achieve this functionality in a single-layer
metasurface, dramatically reducing the footprint required. Our
results also demonstrate that nontrivial combinations of local
and nonlocal resonances in topologically optimized metasurfa-
ces can overcome limitations associated with arrays of weakly
coupled resonators, thereby opening a path to broader polariza-
tion manipulation functionalities.

Code and Data Availability
Code and Data related to obtaining the results presented in this
paper may be reasonably requested from the authors.
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